sunburst {sunburstR} | R Documentation |
'd3.js' Sequence Sunburst Diagrams
Description
Sequences sunburst diagrams provide an interactive method of exploring sequence data, such as website navigation paths.
Usage
sunburst(
data = NULL,
legendOrder = NULL,
colors = NULL,
valueField = "size",
percent = TRUE,
count = FALSE,
explanation = NULL,
breadcrumb = list(),
legend = list(),
sortFunction = NULL,
sumNodes = TRUE,
withD3 = FALSE,
width = NULL,
height = NULL,
elementId = NULL,
sizingPolicy = NULL,
csvdata = NULL,
jsondata = NULL
)
Arguments
data |
data in csv source,target form or in
nested d3 JSON hierarchy with 'name:..., children:[];'. |
legendOrder |
string vector if you would like to manually order the legend. If legendOrder is not provided, then the legend will be in the descending order of the top level hierarchy. |
colors |
|
valueField |
|
percent |
|
count |
|
explanation |
JavaScript function to define a custom explanation for the center
of the sunburst. Note, this will override |
breadcrumb |
|
legend |
|
sortFunction |
|
sumNodes |
|
withD3 |
|
height , width |
height and width of sunburst htmlwidget containing div
specified in any valid |
elementId |
string id as a valid |
sizingPolicy |
see |
csvdata |
|
jsondata |
|
Examples
library(sunburstR)
# read in sample visit-sequences.csv data provided in source
# only use first 100 rows to speed package build and check
# https://gist.github.com/kerryrodden/7090426#file-visit-sequences-csv
sequences <- read.csv(
system.file("examples/visit-sequences.csv",package="sunburstR")
,header = FALSE
,stringsAsFactors = FALSE
)[1:100,]
sunburst(sequences)
## Not run:
# explore some of the arguments
sunburst(
sequences
,count = TRUE
)
sunburst(
sequences
# apply sort order to the legends
,legendOrder = unique(unlist(strsplit(sequences[,1],"-")))
# just provide the name in the explanation in the center
,explanation = "function(d){return d.data.name}"
)
# try with json data
sequence_json <- jsonlite::fromJSON(
system.file("examples/visit-sequences.json",package="sunburstR"),
simplifyDataFrame = FALSE
)
sunburst(sequence_json)
# try with csv data from this fork
# https://gist.github.com/mkajava/7515402
# great use for new breadbrumb wrapping
sunburst(
csvdata = read.csv(
file = paste0(
"https://gist.githubusercontent.com/mkajava/",
"7515402/raw/9f80d28094dc9dfed7090f8fb3376ef1539f4fd2/",
"comment-sequences.csv"
)
,header = TRUE
,stringsAsFactors = FALSE
)
)
# try with csv data from this fork
# https://gist.github.com/rileycrane/92a2c36eb932b4f99e51/
sunburst( csvdata = read.csv(
file = paste0(
"https://gist.githubusercontent.com/rileycrane/",
"92a2c36eb932b4f99e51/raw/",
"a0212b4ca8043af47ec82369aa5f023530279aa3/visit-sequences.csv"
)
,header=FALSE
,stringsAsFactors = FALSE
))
## End(Not run)
## Not run:
# use sunburst to analyze ngram data from Peter Norvig
# http://norvig.com/mayzner.html
library(sunburstR)
library(pipeR)
# read the csv data downloaded from the Google Fusion Table linked in the article
ngrams2 <- read.csv(
system.file(
"examples/ngrams2.csv"
,package="sunburstR"
)
, stringsAsFactors = FALSE
)
ngrams2 %>>%
# let's look at ngrams at the start of a word, so columns 1 and 3
(.[,c(1,3)]) %>>%
# split the ngrams into a sequence by splitting each letter and adding -
(
data.frame(
sequence = strsplit(.[,1],"") %>>%
lapply( function(ng){ paste0(ng,collapse = "-") } ) %>>%
unlist
,freq = .[,2]
,stringsAsFactors = FALSE
)
) %>>%
sunburst
library(htmltools)
ngrams2 %>>%
(
lapply(
seq.int(3,ncol(.))
,function(letpos){
(.[,c(1,letpos)]) %>>%
# split the ngrams into a sequence by splitting each letter and adding -
(
data.frame(
sequence = strsplit(.[,1],"") %>>%
lapply( function(ng){ paste0(ng,collapse = "-") } ) %>>%
unlist
,freq = .[,2]
,stringsAsFactors = FALSE
)
) %>>%
( tags$div(style="float:left;",sunburst( ., height = 300, width = 300 )) )
}
)
) %>>%
tagList %>>%
browsable
## End(Not run)
## Not run:
library(treemap)
library(sunburstR)
library(d3r)
# use example from ?treemap::treemap
data(GNI2014)
tm <- treemap(GNI2014,
index=c("continent", "iso3"),
vSize="population",
vColor="continent",
type="index")
tm_nest <- d3_nest(
tm$tm[,c("continent", "iso3", "vSize", "color")],
value_cols = c("vSize", "color")
)
sunburst(
data = tm_nest,
valueField = "vSize",
count = TRUE,
# to avoid double counting with pre-summed trees
# use sumNodes = FALSE
sumNodes = FALSE,
colors = htmlwidgets::JS("function(d){return d3.select(this).datum().data.color;}"),
withD3 = TRUE
)
## End(Not run)
# calendar sunburst example
library(sunburstR)
df <- data.frame(
date = seq.Date(
as.Date('2014-01-01'),
as.Date('2016-12-31'),
by = "days"
),
stringsAsFactors = FALSE
)
df$year = format(df$date, "%Y")
df$quarter = paste0("Q", ceiling(as.numeric(format(df$date,"%m"))/3))
df$month = format(df$date, "%b")
df$path = paste(df$year, df$quarter, df$month, sep="-")
df$count = rep(1, nrow(df))
sunburst(
data.frame(xtabs(count~path,df)),
# added a degree of difficulty by providing
# not easily sortable names
sortFunction = htmlwidgets::JS(
"
function(a,b){
abb = {
2014:-7,
2015:-6,
2016:-5,
Q1:-4,
Q2:-3,
Q3:-2,
Q4:-1,
Jan:1,
Feb:2,
Mar:3,
Apr:4,
May:5,
Jun:6,
Jul:7,
Aug:8,
Sep:9,
Oct:10,
Nov:11,
Dec:12
}
return abb[a.data.name] - abb[b.data.name];
}
"
)
)
# sorting example: place data in order of occurence
library(sunburstR)
df <- data.frame(
group = c("foo", "bar", "xyz"),
value = c(1, 3, 2)
)
sunburst(df,
# create a trivial sort function
sortFunction = htmlwidgets::JS('function(x) {return x;}'))
new_order <- c(3,2,1)
sunburst(df[new_order,],
sortFunction = htmlwidgets::JS('function(x) {return x;}'))