sumPvals {sumSome} | R Documentation |
True Discovery Guarantee for p-Value Combinations
Description
This function determines confidence bounds for the number of true discoveries, the true discovery proportion and the false discovery proportion within a set of interest, when using p-values as test statistics. The bounds are simultaneous over all sets, and remain valid under post-hoc selection.
Usage
sumPvals(G, S = NULL, alpha = 0.05, truncFrom = NULL, truncTo = 0.5,
type = "vovk.wang", r = 0, nMax = 50)
Arguments
G |
numeric matrix of p-values, where columns correspond to variables, and rows to data transformations (e.g. permutations). The first transformation is the identity. |
S |
vector of indices for the variables of interest (if not specified, all variables). |
alpha |
significance level. |
truncFrom |
truncation parameter: values greater than |
truncTo |
truncation parameter: truncated values are set to |
type |
p-value combination among |
r |
parameter for Vovk and Wang's p-value combination. |
nMax |
maximum number of iterations. |
Details
A p-value p
is transformed as following.
Edgington:
-p
Fisher:
-log(p)
Pearson:
log(1-p)
Liptak:
-qnorm(p)
Cauchy:
tan(0.5 - p)/p
Vovk and Wang:
- sign(r)p^r
An error message is returned if the transformation produces infinite values.
Truncation parameters should be such that truncTo
is not smaller than truncFrom
.
As Pearson's and Liptak's transformations produce infinite values in 1, for such methods
truncTo
should be strictly smaller than 1.
The significance level alpha
should be in the interval [1/B
, 1), where
B
is the number of data transformations (rows in G
).
Value
sumPvals
returns an object of class sumObj
, containing
-
total
: total number of variables (columns inG
) -
size
: size ofS
-
alpha
: significance level -
TD
: lower (1-alpha
)-confidence bound for the number of true discoveries inS
-
maxTD
: maximum value ofTD
that could be found under convergence of the algorithm -
iterations
: number of iterations of the algorithm
Author(s)
Anna Vesely.
References
Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4):584-597.
Hemerik, J. and Goeman, J. J. (2018). False discovery proportion estimation by permutations: confidence for significance analysis of microarrays. JRSS B, 80(1):137-155.
Vesely, A., Finos, L., and Goeman, J. J. (2020). Permutation-based true discovery guarantee by sum tests. Pre-print arXiv:2102.11759.
See Also
True discovery guarantee using generic statistics: sumStats
Access a sumObj
object: discoveries
, tdp
, fdp
Examples
# generate matrix of p-values for 5 variables and 10 permutations
G <- simData(prop = 0.6, m = 5, B = 10, alpha = 0.4, seed = 42)
# subset of interest (variables 1 and 2)
S <- c(1,2)
# create object of class sumObj
# combination: harmonic mean (Vovk and Wang with r = -1)
res <- sumPvals(G, S, alpha = 0.4, r = -1)
res
summary(res)
# lower confidence bound for the number of true discoveries in S
discoveries(res)
# lower confidence bound for the true discovery proportion in S
tdp(res)
# upper confidence bound for the false discovery proportion in S
fdp(res)