findClusters {sumSome} | R Documentation |
Suprathreshold Clusters for Brain Imaging
Description
This function determines spatially connected clusters, where t-scores are more extreme than a given threshold.
Usage
findClusters(copes, mask = NULL, thr = 3.2, alternative = "two.sided", silent = FALSE)
Arguments
copes |
list of 3D numeric arrays (contrasts maps for each subject). |
mask |
3D logical array, where |
thr |
threshold. |
alternative |
direction of the alternative hypothesis ( |
silent |
logical, |
Value
findClusters
returns a 3D numeric array, with integer values corresponding to clusters,
and 0 to other voxels.
Author(s)
Anna Vesely.
See Also
Permutation statistics for brain imaging: brainScores
, brainPvals
True discovery guarantee for cluster analysis: clusterAnalysis
Examples
# simulate 20 copes with dimensions 10x10x10
set.seed(42)
copes <- list()
for(i in seq(20)){copes[[i]] <- array(rnorm(10^3, mean = -10, sd = 30), dim=c(10,10,10))}
# cluster map where t scores are grater than 2.8, in absolute value
thr <- 2.8
cl <- findClusters(copes = copes, thr = thr)
# create object of class sumBrain
res <- brainScores(copes = copes, alpha = 0.2, seed = 42, truncFrom = thr)
res
summary(res)
# confidence bound for the number of true discoveries and the TDP within clusters
out <- clusterAnalysis(res, clusters = cl$clusters)
[Package sumSome version 1.1.0 Index]