fdp {sumSome} | R Documentation |
Confidence Bound for the FDP
Description
This function determines an upper confidence bound for the false discovery proportion within a set of interest. The bound remains valid under post-hoc selection.
Usage
fdp(object)
## S3 method for class 'sumObj'
fdp(object)
Arguments
object |
an object of class |
Value
fdp
returns an upper (1-alpha
)-confidence bound
for the false discovery proportion in the set.
Author(s)
Anna Vesely.
References
Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4):584-597.
Hemerik, J. and Goeman, J. J. (2018). False discovery proportion estimation by permutations: confidence for significance analysis of microarrays. JRSS B, 80(1):137-155.
Vesely, A., Finos, L., and Goeman, J. J. (2020). Permutation-based true discovery guarantee by sum tests. Pre-print arXiv:2102.11759.
See Also
Create a sumObj
object: sumStats
, sumPvals
Lower confidence bound for the number of true discoveries: discoveries
Lower confidence bound for the TDP: tdp
Examples
# generate matrix of p-values for 5 variables and 10 permutations
G <- simData(prop = 0.6, m = 5, B = 10, alpha = 0.4, seed = 42)
# subset of interest (variables 1 and 2)
S <- c(1,2)
# create object of class sumObj
# combination: harmonic mean (Vovk and Wang with r = -1)
res <- sumPvals(G, S, alpha = 0.4, r = -1)
res
summary(res)
# lower confidence bound for the number of true discoveries in S
discoveries(res)
# lower confidence bound for the true discovery proportion in S
tdp(res)
# upper confidence bound for the false discovery proportion in S
fdp(res)