brainPvals {sumSome} | R Documentation |
Permutation p-Values for Brain Imaging
Description
This function computes p-value combinations for different permutations of brain imaging data. A voxel's p-value is calculated by performing the one-sample t test for the null hypothesis that its mean contrast over the different subjects is zero.
Usage
brainPvals(copes, mask = NULL, alternative = "two.sided", alpha = 0.05, B = 200,
seed = NULL, truncFrom = NULL, truncTo = 0.5,
type = "vovk.wang", r = 0, rand = FALSE)
Arguments
copes |
list of 3D numeric arrays (contrasts maps for each subject). |
mask |
3D logical array, where |
alternative |
direction of the alternative hypothesis ( |
alpha |
significance level. |
B |
number of permutations, including the identity. |
seed |
seed. |
truncFrom |
truncation parameter: values greater than |
truncTo |
truncation parameter: truncated values are set to |
type |
p-value combination among |
r |
parameter for Vovk and Wang's p-value combination. |
rand |
logical, |
Details
A p-value p
is transformed as following.
Edgington:
-p
Fisher:
-log(p)
Pearson:
log(1-p)
Liptak:
-qnorm(p)
Cauchy:
tan(0.5 - p)/p
Vovk and Wang:
- sign(r)p^r
An error message is returned if the transformation produces infinite values.
Truncation parameters should be such that truncTo
is not smaller than truncFrom
.
As Pearson's and Liptak's transformations produce infinite values in 1, for such methods
truncTo
should be strictly smaller than 1.
The significance level alpha
should be in the interval [1/B
, 1).
Value
brainPvals
returns an object of class sumBrain
, containing
-
statistics
: numeric matrix of p-values, where columns correspond to voxels inside the brain, and rows to permutations. The first permutation is the identity -
mask
: 3D logical array, whereTRUE
values correspond to voxels inside the brain -
alpha
: significance level -
truncFrom
: transformed first truncation parameter -
truncTo
: transformed second truncation parameter
Author(s)
Anna Vesely.
References
Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4):584-597.
Hemerik, J. and Goeman, J. J. (2018). False discovery proportion estimation by permutations: confidence for significance analysis of microarrays. JRSS B, 80(1):137-155.
Vesely, A., Finos, L., and Goeman, J. J. (2020). Permutation-based true discovery guarantee by sum tests. Pre-print arXiv:2102.11759.
See Also
Permutation statistics for brain imaging using t scores: brainScores
True discovery guarantee for cluster analysis: clusterAnalysis
Suprathreshold clusters: findClusters
Examples
# simulate 20 copes with dimensions 10x10x10
set.seed(42)
copes <- list()
for(i in seq(20)){copes[[i]] <- array(rnorm(10^3, mean = -10, sd = 30), dim=c(10,10,10))}
# cluster map where t scores are grater than 2.8, in absolute value
thr <- 2.8
cl <- findClusters(copes = copes, thr = thr)
# create object of class sumBrain (combination: Cauchy)
res <- brainPvals(copes = copes, alpha = 0.2, seed = 42, type = "cauchy")
res
summary(res)
# confidence bound for the number of true discoveries and the TDP within clusters
out <- clusterAnalysis(res, clusters = cl$clusters)