| brainPvals {sumSome} | R Documentation |
Permutation p-Values for Brain Imaging
Description
This function computes p-value combinations for different permutations of brain imaging data. A voxel's p-value is calculated by performing the one-sample t test for the null hypothesis that its mean contrast over the different subjects is zero.
Usage
brainPvals(copes, mask = NULL, alternative = "two.sided", alpha = 0.05, B = 200,
seed = NULL, truncFrom = NULL, truncTo = 0.5,
type = "vovk.wang", r = 0, rand = FALSE)
Arguments
copes |
list of 3D numeric arrays (contrasts maps for each subject). |
mask |
3D logical array, where |
alternative |
direction of the alternative hypothesis ( |
alpha |
significance level. |
B |
number of permutations, including the identity. |
seed |
seed. |
truncFrom |
truncation parameter: values greater than |
truncTo |
truncation parameter: truncated values are set to |
type |
p-value combination among |
r |
parameter for Vovk and Wang's p-value combination. |
rand |
logical, |
Details
A p-value p is transformed as following.
Edgington:
-pFisher:
-log(p)Pearson:
log(1-p)Liptak:
-qnorm(p)Cauchy:
tan(0.5 - p)/pVovk and Wang:
- sign(r)p^r
An error message is returned if the transformation produces infinite values.
Truncation parameters should be such that truncTo is not smaller than truncFrom.
As Pearson's and Liptak's transformations produce infinite values in 1, for such methods
truncTo should be strictly smaller than 1.
The significance level alpha should be in the interval [1/B, 1).
Value
brainPvals returns an object of class sumBrain, containing
-
statistics: numeric matrix of p-values, where columns correspond to voxels inside the brain, and rows to permutations. The first permutation is the identity -
mask: 3D logical array, whereTRUEvalues correspond to voxels inside the brain -
alpha: significance level -
truncFrom: transformed first truncation parameter -
truncTo: transformed second truncation parameter
Author(s)
Anna Vesely.
References
Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4):584-597.
Hemerik, J. and Goeman, J. J. (2018). False discovery proportion estimation by permutations: confidence for significance analysis of microarrays. JRSS B, 80(1):137-155.
Vesely, A., Finos, L., and Goeman, J. J. (2020). Permutation-based true discovery guarantee by sum tests. Pre-print arXiv:2102.11759.
See Also
Permutation statistics for brain imaging using t scores: brainScores
True discovery guarantee for cluster analysis: clusterAnalysis
Suprathreshold clusters: findClusters
Examples
# simulate 20 copes with dimensions 10x10x10
set.seed(42)
copes <- list()
for(i in seq(20)){copes[[i]] <- array(rnorm(10^3, mean = -10, sd = 30), dim=c(10,10,10))}
# cluster map where t scores are grater than 2.8, in absolute value
thr <- 2.8
cl <- findClusters(copes = copes, thr = thr)
# create object of class sumBrain (combination: Cauchy)
res <- brainPvals(copes = copes, alpha = 0.2, seed = 42, type = "cauchy")
res
summary(res)
# confidence bound for the number of true discoveries and the TDP within clusters
out <- clusterAnalysis(res, clusters = cl$clusters)