SF.CI {sufficientForecasting}R Documentation

Conformal inference of the sufficient forecasting

Description

Conformal inference of the sufficient forecasting

Usage

SF.CI(
  y,
  X,
  newX = NULL,
  type = "LM",
  K = "default",
  L = 1,
  alpha = 0.1,
  discretization = TRUE,
  nslices = 10
)

Arguments

y

Response, T by 1 matrix

X

Predictors, p by T matrix

newX

New predictors, a vector contains p entries (or NULL)

type

LM or LLM (default = LM)

K

The number of common factors (default = obtained by getK)

L

The number of predictive indices, L is required to be no greater than K (default = 1)

alpha

Mis-coverage rate

discretization

Hyperparameter in SIR (default = TRUE)

nslices

Hyperparameter in SIR (default = 10)

Value

A list with components

yhat

Out-of-sample forecast for newX; or in-sample forecast for the last observed data point if newX is NULL

ci_lower

Lower bound of conformal interval

ci_upper

Upper bound of conformal interval

References

Yu, X., Yao, J. and Xue, L. (2022), Nonparametric estimation and conformal inference of the sufficient forecasting with a diverging number of factors, Journal of Business & Economic Statistics 40(1), 342–354.

Examples

utils::data(dataExample,package = "sufficientForecasting")
SF.CI(dataExample$y,dataExample$X,type = "LM",alpha = 0.05)

[Package sufficientForecasting version 0.1.0 Index]