FIRES {subspace}R Documentation

The FIRES Algorithm for Subspace Clustering

Description

The FIRES Algorithm follows a three phase framework: In a first phase, base-clusters are generated using a clustering-algorithm on each dimension in isolation. Then these base-clusters are merged in a second phase to find multidimensional cluster-approximations. These approximations are then refined in the third phase.

Usage

FIRES(data, base_dbscan_epsilon = 1, base_dbscan_minpts = 4,
  minimumpercent = 25, k = 1, mu = 1, minclu = 1, split = 0.66,
  post_dbscan_epsilon = 1, post_dbscan_minpts = 1)

Arguments

data

A matrix or data frame of input data.

base_dbscan_epsilon

parameter for the dbscan execution that generates the base clusters

base_dbscan_minpts

parameter for the dbscan execution that generates the base clusters

minimumpercent

size a base-cluster must have relative to the average size of base clusters so that it is not discarded

k

amount of base-clusters that every base-cluster is compared to for merging purposes

mu

number of most similar clusters in which two clusters must overlap in order to be considered best-merge-clusters of each other

minclu

number of best-merge-candidates a cluster must have to be considered a best-merge-cluster

split

a base-cluster is split to merge it with two different clusters iff both clusters resulting from the split have at least this size in proportion to the average size of base-clusters

post_dbscan_epsilon

parameter for the dbscan execution that turns the cluster-approximations into the clusters that are output at the end

post_dbscan_minpts

parameter for the dbscan execution that turns the cluster-approximations into the clusters that are output at the end

Details

In this implementation, the first phase consists of a run of DBSCAN with the parameters base_dbscan_epsilon and base_dbscan_minpts on the objects as they appear from each particular dimension. Then, all of these base-clusters whose size is smaller than minimumpercent of the average cluster size, e.g. 25 because they are not likely to contain important information for the clustering.

In the second phase, these base clusters are merged to produce subspace cluster approximations. This is achieved by computing the k-most-similar clusters for each base-cluster. Then the set of best-merge-candidates for each base-cluster is determined, which contains those clusters whose k-most-similar clusters overlap the k-most similar clusters of the cluster by at least mu. If a cluster has at least minclu best-merge-candidates,it is considered a best-merge cluster. Finally, every pair of best-merge-clusters that are best-merge-candidates of each other is grouped together with all of their best-merge-candidates to form the cluster approximations.

Note that some clusters need to be split and merged with two different other clusters. This is done before the merging by determining whether the intersection between a cluster and its most similar cluster as well as the size of the cluster without this intersection are both larger than split times the average size of the base clusters.

In the third phase, base-clusters are repeatedly removed from cluster-approximations if their removal improves the amount of objects that are shared by all base-clusters in the approximation. Finally, to generate the definitive clusters from the cluster approximation, for each approximation all base-clusters in the approximation are combined and the a clustering algorithm is performed on these points. In this implementation, DBSCAN was chosen for this purpose and will be performed with the parameters post_dbscan_epsilon and post_dbscan_minpts.

References

Hans-Peter Kriegel, Peer Kröger, Matthias Renz and Sebastian Wurst A Generic Framework for Efficient Subspace Clustering of High-Dimensional Data In Proc. 5th IEEE International Conference on Data Mining, 2005

See Also

Other subspace.clustering.algorithms: CLIQUE; P3C; ProClus; SubClu

Examples

data("subspace_dataset")
FIRES(subspace_dataset)

[Package subspace version 1.0.4 Index]