subscreenvi {subscreen} | R Documentation |
(iii) Determine variable importance
Description
Determine variable importance for continuous, categorical or right-censored survival endpoints (overall and per treatment group) using random forests
Usage
subscreenvi(data, y, cens = NULL, x = NULL, trt = NULL, ...)
Arguments
data |
The data frame containing the dependent and independent variables. |
y |
The name of the column in |
cens |
The name of the column in |
x |
Vector that contains the names of the columns in |
trt |
The name of the column in |
... |
additional arguments to be passed to function |
Value
A list containing ordered data frames with the variable importances (one for each treatment level, one with the ranking variability between the treatment levels and one with the total results)
Examples
## Not run:
require(survival)
data(pbc, package="survival")
# generate categorical versions of some of the baseline covariates
pbc$ageg[!is.na(pbc$age)] <-
ifelse(pbc$age[!is.na(pbc$age)] <= median(pbc$age, na.rm=TRUE), "Low", "High")
pbc$albuming[!is.na(pbc$albumin)]<-
ifelse(pbc$albumin[!is.na(pbc$albumin)] <= median(pbc$albumin, na.rm=TRUE), "Low", "High")
pbc$phosg[!is.na(pbc$alk.phos)] <-
ifelse(pbc$alk.phos[!is.na(pbc$alk.phos)]<= median(pbc$alk.phos,na.rm=TRUE), "Low", "High")
pbc$astg[!is.na(pbc$ast)] <-
ifelse(pbc$ast[!is.na(pbc$ast)] <= median(pbc$ast, na.rm=TRUE), "Low", "High")
pbc$bilig[!is.na(pbc$bili)] <-
ifelse(pbc$bili[!is.na(pbc$bili)] <= median(pbc$bili, na.rm=TRUE), "Low", "High")
pbc$cholg[!is.na(pbc$chol)] <-
ifelse(pbc$chol[!is.na(pbc$chol)] <= median(pbc$chol, na.rm=TRUE), "Low", "High")
pbc$copperg[!is.na(pbc$copper)] <-
ifelse(pbc$copper[!is.na(pbc$copper)] <= median(pbc$copper, na.rm=TRUE), "Low", "High")
pbc$ageg[is.na(pbc$age)] <- "No Data"
pbc$albuming[is.na(pbc$albumin)] <- "No Data"
pbc$phosg[is.na(pbc$alk.phos)] <- "No Data"
pbc$astg[is.na(pbc$ast)] <- "No Data"
pbc$bilig[is.na(pbc$bili)] <- "No Data"
pbc$cholg[is.na(pbc$chol)] <- "No Data"
pbc$copperg[is.na(pbc$copper)] <- "No Data"
#eliminate treatment NAs
pbcdat <- pbc[!is.na(pbc$trt), ]
pbcdat$status <- ifelse(pbcdat$status==0,0,1)
importance <- subscreenvi(data=pbcdat, y='time', cens='status',
trt='trt', x=c("ageg", "sex", "bilig", "cholg", "copperg"))
## End(Not run)