predictdep {subrank} | R Documentation |
Probability forecasting
Description
From a set of incomplete observations, and a description of the dependence, provides simulated values of the unknown coordinates. It is also possible to simulate unconditionally, with empty observations.
Usage
predictdep(knownvalues,dependence,smoothing=c("Uniform","Beta"),nthreads=2)
Arguments
knownvalues |
in case of conditional simulation, a matrix containing incomplete observations, the known coordinates being the same for all observations. If no variable name in |
dependence |
the description of the dependence we want to use to forecast, as built by function |
smoothing |
the smoothing method for input and output ranks. |
nthreads |
number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores() |
Value
the matrix of the completed observations
Author(s)
Jerome Collet
Examples
lon=100
plon=100
subsampsize=10
shift=0
noise=0
knowndims=1
x=rnorm(lon)
y=2*x+noise*rnorm(lon)
donori=as.data.frame(cbind(x,y))
depori=estimdep(donori,c("x","y"),subsampsize)
##
knownvalues=data.frame(x=rnorm(plon)+shift)
prev <- predictdep(knownvalues,depori)
##
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)
##
knownvalues=data.frame(x=rnorm(plon)+shift)
prev <- predictdep(knownvalues,depori,smoothing="Beta")
##
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)
# souci normal si |shift|>>1
knownvalues=data.frame(z=rnorm(plon)+shift)
prev <- predictdep(knownvalues,depori)
##
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)