estimdep {subrank} | R Documentation |
Dependence estimation
Description
From a set of observations, builds a description of the multivariate distribution
Usage
estimdep(dataframe,varnames,subsampsize,nbsafe=5,mixties=FALSE,nthreads=2)
Arguments
dataframe |
a data frame containing the observations |
varnames |
the name of the variables we want to estimate the multivariate distribution |
subsampsize |
the sub-sample size |
nbsafe |
the ratio between the discretized copula size and the number of sub-samples |
mixties |
if |
nthreads |
number of number of threads, assumed to be strictly positive. For "full throttle" computations, consider using parallel::detectCores() |
Value
the description of the dependence, it is an object with the following parts:
cop |
the array representing the discretized copula |
margins |
the matrix representing the margins, estimated using kernel density estimation |
varnames |
the names of the variables |
Author(s)
Jerome Collet
Examples
lon=3000
plon=3000
subsampsize=20
##############
x=(runif(lon)-1/2)*3
y=x^2+rnorm(lon)
z=rnorm(lon)
donori=as.data.frame(cbind(x,y,z))
depori=estimdep(donori,c("x","y","z"),subsampsize)
knownvalues=data.frame(z=rnorm(plon))
prev <- predictdep(knownvalues,depori)
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)
knownvalues=data.frame(x=(runif(lon)-1/2)*3)
prev <- predictdep(knownvalues,depori)
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)
knownvalues=data.frame(y=runif(plon,min=-2,max=4))
prev <- predictdep(knownvalues,depori)
plot(prev$x,prev$y,xlim=c(-2,2),ylim=c(-2,5),pch=20,cex=0.5)
points(donori[,1:2],col='red',pch=20,cex=.5)
[Package subrank version 0.9.9.3 Index]