dist.simple {stylo} | R Documentation |
Cosine Distance
Description
Function for computing Eder's Simple distance of a matrix of values, e.g. a table of word frequencies. This is done by normalizing the input dataset by a square root function, and then applying Manhattan distance.
Usage
dist.simple(x)
Arguments
x |
a matrix or data table containing at least 2 rows and 2 cols, the samples (texts) to be compared in rows, the variables in columns. |
Value
The function returns an object of the class dist
, containing distances
between each pair of samples. To convert it to a square matrix instead,
use the generic function as.dist
.
Author(s)
Maciej Eder
See Also
stylo
, classify
, dist.delta
,
as.dist
Examples
# first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,
Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")
# the table of frequencies looks as follows
print(dataset)
# then, applying a distance, in two flavors
dist.simple(dataset)
as.matrix(dist.simple(dataset))
[Package stylo version 0.7.5 Index]