DSRegressor_MOA {streamMOA} | R Documentation |
DSRegressor_MOA – MOA-based Stream Regressors
Description
Interface for MOA-based stream regression methods based on package RMOA.
Usage
DSRegressor_MOA(formula, RMOA_regressor)
## S3 method for class 'DSRegressor_MOA'
update(object, dsd, n = 1, verbose = FALSE, block = 1000L, ...)
## S3 method for class 'DSRegressor_MOA'
predict(object, newdata, type = "response", ...)
Arguments
formula |
a formula for the regression problem. |
RMOA_regressor |
a |
object |
a DSC object. |
dsd |
a data stream object. |
n |
number of data points taken from the stream. |
verbose |
logical; show progress? |
block |
process blocks of data to improve speed. |
... |
further arguments. |
newdata |
dataframe with the new data. |
type |
prediction type (see |
Details
DSRegressor_MOA
provides an interface to MOA-based stream regressors using package
RMOA. Available regressors can be found at RMOA::MOA_regressors.
Subsequent calls to update()
update the current model.
Value
An object of class DSRegressor_MOA
Author(s)
Michael Hahsler
References
Wijffels, J. (2014) Connect R with MOA to perform streaming classifications. https://github.com/jwijffels/RMOA
Bifet A, Holmes G, Pfahringer B, Kranen P, Kremer H, Jansen T, Seidl T (2010). MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. Journal of Machine Learning Research (JMLR).
Examples
## Not run:
library(streamMOA)
library(RMOA)
# create a data stream for the iris dataset
data <- iris[sample(nrow(iris)), ]
stream <- DSD_Memory(data)
stream
# define a stream regression model.
cl <- DSRegressor_MOA(
Sepal.Length ~ Species + Sepal.Width + Petal.Length,
RMOA::Perceptron()
)
cl
# update the model with 100 points from the stream
update(cl, stream, 100)
# look at the RMOA model object
cl$RMOAObj
# make predictions for the next 50 points
newdata <- get_points(stream, n = 50)
pr <- predict(cl, newdata)
pr
plot(pr, newdata$Sepal.Length, xlim = c(0,10), ylim = c(0,10))
abline(a = 0, b = 1, col = "red")
## End(Not run)