DST {stream} | R Documentation |
Conceptual Base Class for All Data Stream Mining Tasks
Description
Conceptual base class for all data stream mining tasks.
Usage
DST(...)
description(x, ...)
get_model(x, ...)
Arguments
... |
Further arguments. |
x |
an object of a concrete implementation of a DST. |
Details
Base class for data stream mining tasks. Types of DST
are
-
DSAggregate to aggregate data streams (e.g., with a sliding window).
-
DSC for data stream clustering.
-
DSClassifier classification for data streams.
-
DSRegressor regression for data streams.
-
DSOutlier outlier detection for data streams.
-
DSFP frequent pattern mining for data streams.
The common interface for all DST classes consists of
-
update()
update the DST with data points. description() a string describing the DST.
get_model() returns the DST's current model (often as a data.frame or a R model object).
-
predict()
use the learned DST model to make predictions.
and the methods in the Methods Section below.
Author(s)
Michael Hahsler
See Also
Other DST:
DSAggregate()
,
DSC()
,
DSClassifier()
,
DSOutlier()
,
DSRegressor()
,
DST_SlidingWindow()
,
DST_WriteStream()
,
evaluate
,
predict()
,
stream_pipeline
,
update()
Examples
DST()