gsp {stpp} | R Documentation |
Spatial mark variogram function
Description
Computes an estimator of the spatial mark variogram function.
Usage
gsp(xyt,s.region,s.lambda,ds,ks="epanech",hs,correction="none",approach="simplified")
Arguments
xyt |
Spatial coordinates and times |
s.region |
Two-column matrix specifying polygonal region containing all data locations. |
s.lambda |
Vector of values of the spatial intensity function evaluated at the points |
ds |
A vector of distances |
ks |
A kernel function for the spatial distances. The default is the |
hs |
A bandwidth of the kernel function |
correction |
A character vector specifying the edge-correction(s) to be applied among |
approach |
A character vector specifying the approach to use for the estimation to be applied among "simplified" or |
Details
By default, this command calculates an estimate of the spatial mark variogram function \gamma_[sp](r)
for a spatio-temporal point pattern.
Value
egsp |
A vector containing the values of |
ds |
If |
kernel |
A vector of names and bandwidth of the spatial kernel. |
gsptheo |
Value under the Poisson case is calculated considering |
Author(s)
Francisco J. Rodriguez Cortes <frrodriguezc@unal.edu.co> https://fjrodriguezcortes.wordpress.com
References
Baddeley, A., Rubak, E., Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press, Boca Raton.
Chiu, S. N., Stoyan, D., Kendall, W. S., and Mecke, J. (2013). Stochastic Geometry and its Applications. John Wiley & Sons.
Gabriel, E., Rowlingson, B., Diggle P J. (2013) stpp
: an R package for plotting, simulating and analyzing Spatio-Temporal Point Patterns. Journal of Statistical Software. 53, 1-29.
Illian, J B., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, London.
Stoyan, D., Rodriguez-Cortes, F. J., Mateu, J., and Gille, W. (2017). Mark variograms for spatio-temporal point processes. Spatial Statistics. 20, 125-147.
Examples
## Not run:
#################
# A realisation of spatio-temporal homogeneous Poisson point processes
hpp <- rpp(lambda = 100, replace = FALSE)$xyt
# R plot
plot(hpp)
# This function provides an kernel estimator of the spatial mark variogram function
out <- gsp(hpp)
# R plot - Spatial mark variogram function
par(mfrow=c(1,1))
xl <- c(0,0.25)
yl <- c(0,max(out$gsptheo,out$egsp))
plot(out$ds,out$egsp,type="l",xlab="r = distance",ylab=expression(gamma[sp](r)),
xlim=xl,ylim=yl,col=1,cex.lab=1.5,cex.axis=1.5)
lines(out$ds,rep(out$gsptheo,length(out$ds)),col=11)
## End(Not run)