STIKhat {stpp} | R Documentation |
Estimation of the Space-Time Inhomogeneous K-function
Description
Compute an estimate of the Space-Time Inhomogeneous K-function.
Usage
STIKhat(xyt, s.region, t.region, dist, times, lambda,
correction="isotropic", infectious=FALSE)
Arguments
xyt |
Coordinates and times |
s.region |
Two-column matrix specifying polygonal region containing all data locations. If |
t.region |
Vector containing the minimum and maximum values of the time interval. If |
dist |
Vector of distances |
times |
Vector of times |
lambda |
Vector of values of the space-time intensity function evaluated at the points |
correction |
A character vector specifying the edge correction(s) to be applied among |
infectious |
Logical value. If |
Details
Gabriel (2014) proposes the following unbiased estimator for the STIK-function, based on data giving the locations of events x_i: i=1,\ldots,n
on a spatio-temporal region S\times T
, where S
is an arbitrary polygon and T
is a time interval:
\widehat{K}(u,v)=\sum_{i=1}^{n}\sum_{j\neq i}\frac{1}{w_{ij}}\frac{1}{\lambda(x_i)\lambda(x_j)}\mathbf{1}_{\lbrace \|s_i - s_j\| \leq u \ ; \ |t_i - t_j| \leq v \rbrace},
where \lambda(x_i)
is the intensity at x_i = (s_i,t_i)
and w_{ij}
is an edge correction factor to deal with spatial-temporal edge effects. The edge correction methods implemented are:
isotropic
: w_{ij} = |S \times T| w_{ij}^{(t)} w_{ij}^{(s)}
, where the temporal edge correction factor w_{ij}^{(t)} = 1
if both ends of the interval of length 2 |t_i - t_j|
centred at t_i
lie within T
and w_{ij}^{(t)}=1/2
otherwise and w_{ij}^{(s)}
is the proportion of the circumference of a circle centred at the location s_i
with radius \|s_i -s_j\|
lying in S
(also called Ripley's edge correction factor).
border
: w_{ij}=\frac{\sum_{j=1}^{n}\mathbf{1}\lbrace d(s_j,S)>u \ ; \ d(t_j,T) >v\rbrace/\lambda(x_j)}{\mathbf{1}_{\lbrace d(s_i,S) > u \ ; \ d(t_i,T) >v \rbrace}}
, where d(s_i,S)
denotes the distance between s_i
and the boundary of S
and d(t_i,T)
the distance between t_i
and the boundary of T
.
modified.border
: w_{ij} = \frac{|S_{\ominus u}|\times|T_{\ominus v}|}{\mathbf{1}_{\lbrace d(s_i,S) > u \ ; \ d(t_i,T) >v \rbrace}}
, where S_{\ominus u}
and T_{\ominus v}
are the eroded spatial and temporal region respectively, obtained by trimming off a margin of width u
and v
from the border of the original region.
translate
: w_{ij} =|S \cap S_{s_i-s_j}| \times |T \cap T_{t_i-t_j}|
, where S_{s_i-s_j}
and T_{t_i-t_j}
are the translated spatial and temporal regions.
none
: No edge correction is performed and w_{ij}=|S \times T|
.
If parameter infectious = TRUE
, ony future events are considered and the estimator is, using an isotropic edge correction factor (Gabriel and Diggle, 2009):
\widehat{K}(u,v)=\frac{1}{|S\times T|}\frac{n}{n_v}\sum_{i=1}^{n_v}\sum_{j=1; j > i}^{n_v} \frac{1}{w_{ij}} \frac{1}{\lambda(x_i) \lambda(x_j)}\mathbf{1}_{\left\lbrace u_{ij} \leq u\right\rbrace}\mathbf{1}_{\left\lbrace t_j - t_i \leq v \right\rbrace}.
In this equation, the points x_i=(s_i, t_i)
are ordered so that t_i < t_{i+1}
, with ties due to round-off error broken by randomly unrounding if necessary. To deal with temporal edge-effects, for each v
, n_v
denotes the number of events for which t_i \leq T_1 -v
, with T=[T_0,T_1]
. To deal with spatial edge-effects, we use Ripley's method.
If lambda
is missing in argument, STIKhat
computes an estimate of the space-time (homogeneous)
K-function:
\widehat{K}(u,v)=\frac{|S\times T|}{n_v(n-1)} \sum_{i=1}^{n_v}\sum_{j=1;j>i}^{n_v}\frac{1}{w_{ij}}\mathbf{1}_{\lbrace u_{ij}\leq u \rbrace}\mathbf{1}_{\lbrace t_j - t_i \leq v \rbrace}
Value
A list containing:
Khat |
|
Ktheo |
|
dist , times , infectious |
Parameters passed in argument. |
correction |
The name(s) of the edge correction method(s) passed in argument. |
Author(s)
Edith Gabriel <edith.gabriel@inrae.fr>
References
Baddeley A., Moller J. and Waagepetersen R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329–350.
Baddeley, A., Rubak, E., Turner, R., (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press, Boca Raton.
Diggle P. , Chedwynd A., Haggkvist R. and Morris S. (1995). Second-order analysis of space-time clustering. Statistical Methods in Medical Research, 4, 124–136.
Gabriel E., Diggle P. (2009). Second-order analysis of inhomogeneous spatio-temporal point process data. Statistica Neerlandica, 63, 43–51.
Gabriel E., Rowlingson B., Diggle P. (2013). stpp: an R package for plotting, simulating and analyzing Spatio-Temporal Point Patterns. Journal of Statistical Software, 53(2), 1–29.
Gabriel E. (2014). Estimating second-order characteristics of inhomogeneous spatio-temporal point processes: influence of edge correction methods and intensity estimates. Methodology and computing in Applied Probabillity, 16(2), 411–431.
Examples
# First example
data(fmd)
data(northcumbria)
FMD<-as.3dpoints(fmd[,1]/1000,fmd[,2]/1000,fmd[,3])
Northcumbria=northcumbria/1000
# estimation of the temporal intensity
Mt<-density(FMD[,3],n=1000)
mut<-Mt$y[findInterval(FMD[,3],Mt$x)]*dim(FMD)[1]
# estimation of the spatial intensity
h<-mse2d(as.points(FMD[,1:2]), Northcumbria, nsmse=50, range=4)
h<-h$h[which.min(h$mse)]
Ms<-kernel2d(as.points(FMD[,1:2]), Northcumbria, h, nx=5000, ny=5000)
atx<-findInterval(x=FMD[,1],vec=Ms$x)
aty<-findInterval(x=FMD[,2],vec=Ms$y)
mhat<-NULL
for(i in 1:length(atx)) mhat<-c(mhat,Ms$z[atx[i],aty[i]])
# estimation of the STIK function
u <- seq(0,10,by=1)
v <- seq(0,15,by=1)
stik1 <- STIKhat(xyt=FMD, s.region=northcumbria/1000,t.region=c(1,200),
lambda=mhat*mut/dim(FMD)[1], dist=u, times=v, infectious=TRUE)
# plotting the estimation
plotK(stik1)
plotK(stik1,type="persp",theta=-65,phi=35)
# Second example
xyt=rpp(lambda=200)
stik2=STIKhat(xyt$xyt,dist=seq(0,0.16,by=0.02),
times=seq(0,0.16,by=0.02),correction=c("border","translate"))
plotK(stik2,type="contour",legend=TRUE,which="translate")