KLISTAhat {stpp} | R Documentation |
Estimation of the Space-Time Inhomogeneous K LISTA functions
Description
Compute an estimate of the space-time K LISTA functions.
Usage
KLISTAhat(xyt, s.region, t.region, dist, times, lambda, correction = "isotropic")
Arguments
xyt |
Coordinates and times |
s.region |
Two-column matrix specifying polygonal region containing all data locations. If |
t.region |
Vector containing the minimum and maximum values of the time interval. If |
dist |
Vector of distances |
times |
Vector of times |
lambda |
Vector of values of the space-time intensity function evaluated at the points |
correction |
A character vector specifying the edge correction(s) to be applied among |
Details
An individual product density LISTA functions K^{(i)}(.,.)
should reveal the extent of the contribution of the event (u_i,t_i)
to the global estimator of the K-function K(.,.)
, and may provide a further description of structure in the data (e.g., determining events with similar local structure through dissimilarity measures of the individual LISTA functions), for more details see Siino et al. (2019).
Value
A list containing:
list.KLISTA |
A list containing the values of the estimation of |
klistatheo |
|
dist , times |
Parameters passed in argument. |
correction |
The name(s) of the edge correction method(s) passed in argument. |
Author(s)
Francisco J. Rodriguez-Cortes <frrodriguezc@unal.edu.co>
References
Baddeley, A. and Turner, J. (2005). spatstat
: An R Package for Analyzing Spatial Point Pattens. Journal of Statistical Software 12, 1-42.
Cressie, N. and Collins, L. B. (2001). Analysis of spatial point patterns using bundles of product density LISA functions. Journal of Agricultural, Biological, and Environmental Statistics 6, 118-135.
Cressie, N. and Collins, L. B. (2001). Patterns in spatial point locations: Local indicators of spatial association in a minefield with clutter Naval Research Logistics (NRL), John Wiley & Sons, Inc. 48, 333-347.
Siino, M., Adelfio, G., Mateu, J. and Rodriguez-Cortes, F. J. (2019). Some properties of weighted local second-order statistcs for spatio-temporal point process. Submitted.
Stoyan, D. and Stoyan, H. (1994). Fractals, random shapes, and point fields: methods of geometrical statistics. Chichester: Wiley.