spm_discrete {stpm} | R Documentation |
Discrete multi-dimensional optimization
Description
Discrete multi-dimensional optimization
Usage
spm_discrete(
dat,
theta_range = seq(0.02, 0.2, by = 0.001),
tol = NULL,
verbose = FALSE
)
Arguments
dat |
A data table. |
theta_range |
A range of |
tol |
A tolerance threshold for matrix inversion (NULL by default). |
verbose |
An indicator of verbosing output. |
Details
This function is way more faster that continuous spm_continuous_MD(...)
(but less precise) and used mainly in
estimation a starting point for the spm_continuous_MD(...)
.
Value
A list of two elements ("dmodel", "cmodel"): (1) estimated parameters u, R, b, Sigma, Q, mu0, theta for discrete-time model and (2) estimated parameters a, f1, Q, f, b, mu0, theta for continuous-time model. Note: b and mu0 from first list are different from b and mu0 from the second list.
References
Akushevich I., Kulminski A. and Manton K. (2005), Life tables with covariates: Dynamic model for Nonlinear Analysis of Longitudinal Data. Mathematical Population Studies, 12(2), pp.: 51-80. <DOI:10.1080/08898480590932296>.
Examples
library(stpm)
data <- simdata_discr(N=10)
#Parameters estimation
pars <- spm_discrete(data)
pars