spm_continuous {stpm} | R Documentation |
Continuous multi-dimensional optimization
Description
Continuous multi-dimensional optimization
Usage
spm_continuous(
dat,
a = -0.05,
f1 = 80,
Q = 2e-08,
f = 80,
b = 5,
mu0 = 2e-05,
theta = 0.08,
stopifbound = FALSE,
lb = NULL,
ub = NULL,
verbose = FALSE,
pinv.tol = 0.01,
gomp = FALSE,
opts = list(algorithm = "NLOPT_LN_NELDERMEAD", maxeval = 100, ftol_rel = 1e-08),
logmu0 = FALSE
)
Arguments
dat |
A data table. |
a |
A starting value of the rate of adaptive response to any deviation of Y from f1(t). |
f1 |
A starting value of the average age trajectories of the variables which process is forced to follow. |
Q |
Starting values of the quadratic hazard term. |
f |
A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time. |
b |
A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process. |
mu0 |
A starting value of the baseline hazard. |
theta |
A starting value of the parameter theta (axe displacement of Gompertz function). |
stopifbound |
Estimation stops if at least one parameter achieves lower or upper boundaries. #'Check the NLopt website for a description of the algorithms. Default: NLOPT_LN_NELDERMEAD |
lb |
Lower bound of parameters under estimation. |
ub |
Upper bound of parameters under estimation. The program stops when the number of function evaluations exceeds maxeval. Default: 500. |
verbose |
An indicator of verbosing output. |
pinv.tol |
A tolerance value for pseudo-inverse of matrix gamma (see Yashin, A.I. et al (2007). Stochastic model for analysis of longitudinal data on aging and mortality. Mathematical Biosciences, 208(2), 538-551.<DOI:10.1016/j.mbs.2006.11.006>.) |
gomp |
A flag (FALSE by default). When it is set, then time-dependent exponential form of mu0 is used: mu0 = mu0*exp(theta*t). |
opts |
A list of options for |
logmu0 |
Natural logarith of baseline mortality.
Default: |
Details
spm_continuous
runs much slower that discrete but more precise and can handle time
intervals with different lengths.
Value
A set of estimated parameters a, f1, Q, f, b, mu0, theta and
additional variable limit
which indicates if any parameter
achieved lower or upper boundary conditions (FALSE by default).
status Optimization status (see documentation for nloptr package).
LogLik A logarithm likelihood.
objective A value of objective function (given by nloptr).
message A message given by nloptr optimization function (see documentation for nloptr package).
References
Yashin, A.I. et al (2007). Stochastic model for analysis of longitudinal data on aging and mortality. Mathematical Biosciences, 208(2), 538-551.<DOI:10.1016/j.mbs.2006.11.006>.
Examples
library(stpm)
set.seed(123)
#Reading the data:
data <- simdata_cont(N=2)
head(data)
#Parameters estimation:
pars <- spm_continuous(dat=data,a=-0.05, f1=80,
Q=2e-8, f=80, b=5, mu0=2e-5)
pars