route_rolling_gradient {stplanr} | R Documentation |
Calculate rolling average gradient from elevation data at segment level
Description
Calculate rolling average gradient from elevation data at segment level
Usage
route_rolling_gradient(elevations, distances, lag = 1, n = 2, abs = TRUE)
Arguments
elevations |
Elevations, e.g. those provided by the |
distances |
Distances, e.g. those provided by the |
lag |
The window size of the smoothing function. The default, 3, will take the mean of values before, after and including each value. |
n |
The window size of the smoothing function. The default, 3, will take the mean of values before, after and including each value. |
abs |
Should the absolute (always positive) change be returned? True by default |
See Also
Other route_funs:
route_average_gradient()
,
route_rolling_average()
,
route_rolling_diff()
,
route_sequential_dist()
,
route_slope_matrix()
,
route_slope_vector()
Examples
r1 <- od_data_routes[od_data_routes$route_number == 2, ]
y <- r1$elevations
distances <- r1$distances
route_rolling_gradient(y, distances)
route_rolling_gradient(y, distances, abs = FALSE)
route_rolling_gradient(y, distances, n = 3)
route_rolling_gradient(y, distances, n = 4)
r1$elevations_diff_1 <- route_rolling_diff(y, lag = 1)
r1$rolling_gradient <- route_rolling_gradient(y, distances, n = 2)
r1$rolling_gradient3 <- route_rolling_gradient(y, distances, n = 3)
r1$rolling_gradient4 <- route_rolling_gradient(y, distances, n = 4)
d <- cumsum(r1$distances) - r1$distances / 2
diff_above_mean <- r1$elevations_diff_1 + mean(y)
par(mfrow = c(2, 1))
plot(c(0, cumsum(r1$distances)), c(y, y[length(y)]), ylim = c(80, 130))
lines(c(0, cumsum(r1$distances)), c(y, y[length(y)]))
points(d, diff_above_mean)
abline(h = mean(y))
rg <- r1$rolling_gradient
rg[is.na(rg)] <- 0
plot(c(0, d), c(0, rg), ylim = c(0, 0.2))
points(c(0, d), c(0, r1$rolling_gradient3), col = "blue")
points(c(0, d), c(0, r1$rolling_gradient4), col = "grey")
par(mfrow = c(1, 1))
[Package stplanr version 1.2.1 Index]