stppm {stopp} | R Documentation |
Fit a Poisson process model to a spatio-temporal point pattern
Description
This function fits a Poisson process model to an observed spatio-temporal
point pattern stored in a stp
object.
Usage
stppm(
X,
formula,
formula_mark = NULL,
covs = NULL,
marked = FALSE,
spatial.cov = FALSE,
verbose = FALSE,
mult = 4,
interp = TRUE,
parallel = FALSE,
sites = 1,
seed = NULL,
ncube = NULL,
grid = FALSE,
ncores = 2,
lsr = FALSE
)
Arguments
X |
A |
formula |
An object of class |
formula_mark |
An object of class |
covs |
A list containing |
marked |
Logical value indicating whether the point process model to be
fit is multitype. Default to |
spatial.cov |
Logical value indicating whether the point process model to be
fit depends on spatio-temporal covariates. Default to |
verbose |
Default to |
mult |
The multiplicand of the number of data points, for setting the number of dummy points to generate for the quadrature scheme. |
interp |
Logical value indicating whether to interpolate covariate values
to dummy points or to use the covariates locations as dummies.
Default to |
parallel |
Logical values indicating whether to use parallelization to
interpolate covariates. Default to |
sites |
..... |
seed |
The seed used for the simulation of the dummy points. Default to
|
ncube |
Number of cubes used for the cubature scheme. |
grid |
Logical value indicating whether to generate dummy points on a
regular grid or randomly. Default to |
ncores |
Number of cores to use, if parallelizing. Default to 2. |
lsr |
Logical value indicating whether to use Logistic Spatio-Temporal
Regression or Poisson regression. Default to |
Details
We assume that the template model is a Poisson process, with a parametric
intensity or rate function \lambda(\textbf{u}, t; \theta)
with space
and time locations \textbf{u} \in
W, t \in T
and parameters \theta \in \Theta.
Estimation is performed through the fitting of a glm
using a spatio-temporal
version of the quadrature scheme by Berman and Turner (1992).
Value
An object of class stppm
. A list of
IntCoefs
The fitted coefficients
X
The
stp
object provided as inputnX
The number of points in
X
I
Vector indicating which points are dummy or data
y_resp
The response variable of the model fitted to the quadrature scheme
formula
The formula provided as input
l
Fitted intensity
mod_global
The
glm
object of the model fitted to the quadrature schemenewdata
The data used to fit the model, without the dummy points
time
Time elapsed to fit the model, in minutes
Author(s)
Nicoletta D'Angelo and Marco Tarantino
References
Baddeley, A. J., Møller, J., and Waagepetersen, R. (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3):329–350
Berman, M. and Turner, T. R. (1992). Approximating point process likelihoods with glim. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(1):31–38
D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
See Also
plot.stppm, print.stppm, summary.stppm
Examples
set.seed(2)
ph <- rstpp(lambda = 200)
hom1 <- stppm(ph, formula = ~ 1)
## Inhomogeneous
set.seed(2)
pin <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)}, par = c(2, 6))
inh1 <- stppm(pin, formula = ~ x)
## Inhomogeneous depending on external covariates
set.seed(2)
df1 <- data.frame(runif(100), runif(100), runif(100), rpois(100, 15))
df2 <- data.frame(runif(100), runif(100), runif(100), rpois(100, 15))
obj1 <- stcov(df1, names = "cov1")
obj2 <- stcov(df2, names = "cov2")
covariates <- list(cov1 = obj1, cov2 = obj2)
inh2 <- stppm(pin, formula = ~ x + cov2, covs = covariates, spatial.cov = TRUE)
## Inhomogeneous semiparametric
inh3 <- stppm(pin, formula = ~ s(x, k = 30))
## Multitype
set.seed(2)
dfA <- data.frame(x = runif(100), y = runif(100), t = runif(100),
m1 = rep(c("A"), times = 100))
dfB <- data.frame(x = runif(50), y = runif(50), t = runif(50),
m1 = rep(c("B"), each = 50))
stpm1 <- stpm(rbind(dfA, dfB))
inh4 <- stppm(stpm1, formula = ~ x + s(m1, bs = "re"), marked = TRUE)