plot.locstppm {stopp} | R Documentation |
Plot of the fitted intensity of a local spatio-temporal Poisson process model
Description
The function plots the local fitted intensity, displayed both in space and in space and time.
Usage
## S3 method for class 'locstppm'
plot(
x,
scaler = c("silverman", "IQR", "sd", "var"),
do.points = TRUE,
print.bw = FALSE,
zap = 1e-05,
par = TRUE,
...
)
Arguments
x |
An object of class |
scaler |
Optional. Controls the value for a scalar representation of the
spatial scale of the data.
Either a character string, |
do.points |
Add points to plot |
print.bw |
It prints the estimated oversmoothing (OS) bandwidth selector |
zap |
Noise threshold factor (default to 0.00001). A numerical value greater than or equal to 1.
If the range of pixel values is less than |
par |
Default to |
... |
additional unused argument |
Author(s)
Nicoletta D'Angelo
References
D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Terrell, G.R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477.
See Also
locstppm, print.locstppm, summary.locstppm
Examples
set.seed(2)
inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)},
par = c(0.005, 5))
inh_local <- locstppm(inh, formula = ~ x)
plot(inh_local)