localsummary {stopp} | R Documentation |
Summary plots of the fitted coefficient of a local spatio-temporal Poisson process or a local LGCP model
Description
The function breaks up the contribution of the local estimates to the fitted intensity, by plotting the overall intensity and the density kernel smoothing of some artificial intensities, obtained by imputing the quartiles of the local parameters' distributions.
Usage
localsummary(
x,
scaler = c("silverman", "IQR", "sd", "var"),
do.points = TRUE,
print.bw = FALSE,
zap = 1e-05,
par = TRUE
)
Arguments
x |
An object of class |
scaler |
Optional. Controls the value for a scalar representation of the
spatial scale of the data.
Either a character string, |
do.points |
Add points to plot |
print.bw |
It prints the estimated oversmoothing (OS) bandwidth selector |
zap |
Noise threshold factor (default to 0.00001). A numerical value greater than or equal to 1.
If the range of pixel values is less than |
par |
Default to |
Author(s)
Nicoletta D'Angelo and Giada Adelfio
References
D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
Davies, T.M. and Hazelton, M.L. (2010). Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Terrell, G.R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477.
See Also
Examples
# Local spatio-temporal Poisson process model
set.seed(2)
inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)},
par = c(0.005, 5))
inh_local <- locstppm(inh, formula = ~ x)
localsummary(inh_local)
# Local LGCP
catsub <- stp(greececatalog$df[1:200, ])
lgcp_loc <- stlgcppm(catsub, formula = ~ x, first = "local")
localsummary(lgcp_loc)