| localSTLKinhom {stopp} | R Documentation |
Local inhomogeneous Spatio-temporal K-functions on a linear network
Description
The functions localSTLKinhom and localSTLginhom implement the
inhomogeneous LISTA functions proposed in D'Angelo et al. (2022).
Usage
localSTLKinhom(
x,
lambda = lambda,
normalize = FALSE,
r = NULL,
t = NULL,
nxy = 10
)
Arguments
x |
A realisation of a spatio-temporal point processes on a linear network in |
lambda |
values of estimated intensity. |
normalize |
normalization factor to be considered. |
r |
values of argument r where K-function will be evaluated. optional. |
t |
values of argument t where K-function will be evaluated. optional. |
nxy |
pixel array dimensions. optional. |
Details
The homogeneous K-function and pair correlation functions, in
D'Angelo et al. (2021), can be obtained easily with localSTLKinhom and
localSTLginhom, by imputing a lambda vector of constant intensity
values, the same for each point.
Value
A list of class lista.
The objects are of class sumstlpp (Moradi and Mateu, 2020).
Author(s)
Nicoletta D'Angelo
References
D’Angelo, N., Adelfio, G., and Mateu, J. (2021). Assessing local differences between the spatio-temporal second-order structure of two point patterns occurring on the same linear network. Spatial Statistics, 45, 100534.
D’Angelo, N., Adelfio, G., and Mateu, J. (2022). Local inhomogeneous second-order characteristics for spatio-temporal point processes on linear networks. Stat Papers. https://doi.org/10.1007/s00362-022-01338-4
See Also
localSTLginhom, STLKinhom, STLginhom
Examples
set.seed(2)
df_net <- data.frame(x = runif(25, 0, 0.85), y = runif(25, 0, 0.85), t = runif(25))
stlp1 <- stp(df_net, L = chicagonet)
lambda <- rep(diff(range(stlp1$df$x)) * diff(range(stlp1$df$y))
* diff(range(stlp1$df$t)) / spatstat.geom::volume(stlp1$L),
nrow(stlp1$df))
k <- localSTLKinhom(stlp1, lambda = lambda, normalize = TRUE)