localSTLKinhom {stopp} | R Documentation |
Local inhomogeneous Spatio-temporal K-functions on a linear network
Description
The functions localSTLKinhom
and localSTLginhom
implement the
inhomogeneous LISTA functions proposed in D'Angelo et al. (2022).
Usage
localSTLKinhom(
x,
lambda = lambda,
normalize = FALSE,
r = NULL,
t = NULL,
nxy = 10
)
Arguments
x |
A realisation of a spatio-temporal point processes on a linear network in |
lambda |
values of estimated intensity. |
normalize |
normalization factor to be considered. |
r |
values of argument r where K-function will be evaluated. optional. |
t |
values of argument t where K-function will be evaluated. optional. |
nxy |
pixel array dimensions. optional. |
Details
The homogeneous K-function and pair correlation functions, in
D'Angelo et al. (2021), can be obtained easily with localSTLKinhom
and
localSTLginhom
, by imputing a lambda vector of constant intensity
values, the same for each point.
Value
A list of class lista
.
The objects are of class sumstlpp
(Moradi and Mateu, 2020).
Author(s)
Nicoletta D'Angelo
References
D’Angelo, N., Adelfio, G., and Mateu, J. (2021). Assessing local differences between the spatio-temporal second-order structure of two point patterns occurring on the same linear network. Spatial Statistics, 45, 100534.
D’Angelo, N., Adelfio, G., and Mateu, J. (2022). Local inhomogeneous second-order characteristics for spatio-temporal point processes on linear networks. Stat Papers. https://doi.org/10.1007/s00362-022-01338-4
See Also
localSTLginhom, STLKinhom, STLginhom
Examples
set.seed(2)
df_net <- data.frame(x = runif(25, 0, 0.85), y = runif(25, 0, 0.85), t = runif(25))
stlp1 <- stp(df_net, L = chicagonet)
lambda <- rep(diff(range(stlp1$df$x)) * diff(range(stlp1$df$y))
* diff(range(stlp1$df$t)) / spatstat.geom::volume(stlp1$L),
nrow(stlp1$df))
k <- localSTLKinhom(stlp1, lambda = lambda, normalize = TRUE)