sample_parameters {stochLAB} | R Documentation |
Parameter sampling whiz
Description
Generates the random samples of all the stochastic CRM parameters. For internal use.
Usage
sample_parameters(
model_options,
mod_mths,
n_iter = 10,
flt_speed_pars,
body_lt_pars,
wing_span_pars,
avoid_bsc_pars,
avoid_ext_pars,
noct_act_pars,
prop_crh_pars,
bird_dens_opt = "tnorm",
bird_dens_dt,
gen_fhd_boots = NULL,
site_fhd_boots = NULL,
rtr_radius_pars,
air_gap_pars,
bld_width_pars,
rtn_pitch_opt = "probDist",
bld_pitch_pars,
rtn_speed_pars,
windspd_pars,
rtn_pitch_windspd_dt,
trb_wind_avbl,
trb_downtime_pars,
lrg_arr_corr
)
Arguments
model_options |
Character vector, the model options for calculating collision risk (see Details section below). |
mod_mths |
character vector, the names of months under modelling |
n_iter |
An integer. The number of iterations for the model simulation. |
flt_speed_pars |
A single row data frame with columns |
body_lt_pars |
A single row data frame with columns |
wing_span_pars |
A single row data frame with columns |
avoid_bsc_pars , avoid_ext_pars |
Single row data frames with columns
|
noct_act_pars |
A single row data frame with columns |
prop_crh_pars |
Required only for model Option 1, a single row data
frame with columns |
bird_dens_opt |
Option for specifying the random sampling mechanism for bird densities:
|
bird_dens_dt |
A data frame with monthly estimates of bird density within the windfarm footprint, expressed as the number of daytime in-flight birds/km^2 per month. Data frame format requirements:
|
gen_fhd_boots |
Required only for model Options 2 and 3, a data frame
with bootstrap samples of flight height distributions (FHD) of the species
derived from general (country/regional level) data. FHD provides relative
frequency distribution of bird flights at 1-+
-metre height bands, starting
from sea surface. The first column must be named as NOTE: generic_fhd_bootstraps is a list object with generic FHD bootstrap estimates for 25 seabird species from Johnson et al (2014) doi:10.1111/1365-2664.12191 (see usage in Example Section below). |
site_fhd_boots |
Required only for model Option 4, a data frame similar
to |
rtr_radius_pars |
A single row data frame with columns |
air_gap_pars |
A single row data frame with columns |
bld_width_pars |
A single row data frame with columns |
rtn_pitch_opt |
a character string, the option for specifying the sampling mechanism for rotation speed and blade pitch:
|
bld_pitch_pars |
Only required if |
rtn_speed_pars |
Only required if |
windspd_pars |
Only required if |
rtn_pitch_windspd_dt |
Only required if
|
trb_wind_avbl |
A data frame with the monthly estimates of operational wind availability. It must contain the columns:
|
trb_downtime_pars |
A data frame with monthly estimates of maintenance downtime, assumed to follow a tnorm-lw0 distribution. It must contain the following columns:
|
lrg_arr_corr |
Boolean value. If TRUE, the large array correction will be applied. This is a correction factor to account for the decay in bird density at later rows in wind farms with a large array of turbines. |
Details
Collision risk can be calculated under 4 options, specified by model_options
:
-
Option 1 - Basic model with proportion at collision risk height derived from site survey (
prop_crh_surv
). -
Option 2 - Basic model with proportion at collision risk height derived from a generic flight height distribution (
gen_fhd
). -
Option 3 - Extended model using a generic flight height distribution (
gen_fhd
). -
Option 4 - Extended model using a site-specific flight height distribution (
site_fhd
).
Where,
Basic model - assumes a uniform distribution of bird flights at collision risk height (i.e. above the minimum and below the maximum height of the rotor blade).
Extended model - takes into account the distribution of bird flight heights at collision risk height.
Value
A list object with each element comprising sampled values of given CRM parameter
Examples
bird_dens_dt <- data.frame(
month = month.abb,
mean = runif(12, 0.8, 1.5),
sd = runif(12, 0.2, 0.3)
)
# wind availability
trb_wind_avbl <- data.frame(
month = month.abb,
pctg = runif(12, 85, 98)
)
# maintenance downtime
trb_downtime_pars <- data.frame(
month = month.abb,
mean = runif(12, 6, 10),
sd = rep(2, 12))
# Wind speed relationships
wind_rtn_ptch <- data.frame(
wind_speed = seq_len(30),
rtn_speed = 10/(30:1),
bld_pitch = c(rep(90, 4), rep(0, 8), 5:22)
)
bird_dens_opt <- "tnorm"
### extract and standardize month format from monthly data sets
b_dens_mth <- switch (bird_dens_opt,
tnorm = bird_dens_dt$month,
resample = names(bird_dens_dt),
qtiles = names(bird_dens_dt)[names(bird_dens_dt) != "p"]
) %>% format_months()
dwntm_mth <- format_months(trb_downtime_pars$month)
windav_mth <- format_months(trb_wind_avbl$month)
### Set months to model: only those in common amongst monthly data sets
mod_mths <- Reduce(intersect, list(b_dens_mth, dwntm_mth, windav_mth))
### Order chronologically
mod_mths <- mod_mths[order(match(mod_mths, month.abb))]
param_draws <- sample_parameters(
model_options = c(1,2,3),
n_iter = 10,
mod_mths = mod_mths,
flt_speed_pars = data.frame(mean=7.26,sd=1.5),
body_lt_pars = data.frame(mean=0.39,sd=0.005),
wing_span_pars = data.frame(mean=1.08,sd=0.04),
avoid_bsc_pars = data.frame(mean=0.99,sd=0.001),
avoid_ext_pars = data.frame(mean=0.96,sd=0.002),
noct_act_pars = data.frame(mean=0.033,sd=0.005),
prop_crh_pars = data.frame(mean=0.06,sd=0.009),
bird_dens_opt = "tnorm",
bird_dens_dt = bird_dens_dt,
gen_fhd_boots = generic_fhd_bootstraps[[1]],
site_fhd_boots = NULL,
rtr_radius_pars = data.frame(mean=80,sd=0),
air_gap_pars = data.frame(mean=36,sd=0),
bld_width_pars = data.frame(mean=8,sd=0),
rtn_pitch_opt = "windSpeedReltn",
bld_pitch_pars = NULL,
rtn_speed_pars = NULL,
windspd_pars = data.frame(mean=7.74,sd=3),
rtn_pitch_windspd_dt = wind_rtn_ptch,
trb_wind_avbl = trb_wind_avbl,
trb_downtime_pars = trb_downtime_pars,
lrg_arr_corr = TRUE
)