stepSplitReg {stepSplitReg} | R Documentation |
Stepwise Split Regularized Regression
Description
stepSplitReg
performs stepwise split regularized regression.
Usage
stepSplitReg(
x,
y,
n_models = NULL,
max_variables = NULL,
keep = 1,
model_criterion = c("F-test", "RSS")[1],
stop_criterion = c("F-test", "pR2", "aR2", "R2", "Fixed")[1],
stop_parameter = 0.05,
shrinkage = TRUE,
alpha = 3/4,
include_intercept = TRUE,
n_lambda = 100,
tolerance = 0.001,
max_iter = 1e+05,
n_folds = 10,
model_weights = c("Equal", "Proportional", "Stacking")[1]
)
Arguments
x |
Design matrix. |
y |
Response vector. |
n_models |
Number of models into which the variables are split. |
max_variables |
Maximum number of variables that a model can contain. |
keep |
Proportion of models to keep based on their individual cross-validated errors. Default is 1. |
model_criterion |
Criterion for adding a variable to a model. Must be one of c("F-test", "RSS"). Default is "F-test". |
stop_criterion |
Criterion for determining when a model is saturated. Must be one of c("F-test", "pR2", "aR2", "R2", "Fixed"). Default is "F-test". |
stop_parameter |
Parameter value for the stopping criterion. Default is 0.05 for "F-test". |
shrinkage |
TRUE or FALSE parameter for shrinkage of the final models. Default is TRUE. |
alpha |
Elastic net mixing parmeter for model shrinkage. Default is 3/4. |
include_intercept |
TRUE or FALSE parameter for the inclusion of an intercept term. |
n_lambda |
Number of candidates for the sparsity penalty parameter. Default is 100. |
tolerance |
Convergence criteria for the coefficients. Default is 1e-3. |
max_iter |
Maximum number of iterations in the algorithm. Default is 1e5. |
n_folds |
Number of cross-validation folds. Default is 10. |
model_weights |
Criterion to determine the weights of the model for prediciton. Must be one of c("Equal", "Proportional", "Stacking"). Default is "Equal". |
Value
An object of class stepSplitReg.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.stepSplitReg
, predict.stepSplitReg
Examples
# Required Libraries
library(mvnfast)
# Setting the parameters
p <- 100
n <- 30
n.test <- 1000
sparsity <- 0.2
rho <- 0.5
SNR <- 3
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
# Correlation structure
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- rho
diag(Sigma) <- 1
true.beta <- c(nonzero.betas, rep(0 , p - p.active))
# Computing the noise parameter for target SNR
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma %*% true.beta)/SNR))
# Simulate some data
set.seed(1)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Stepwise Split Regularized Regression
step.out <- stepSplitReg(x.train, y.train, n_models = 3, max_variables = NULL, keep = 4/4,
model_criterion = c("F-test", "RSS")[1],
stop_criterion = c("F-test", "pR2", "aR2", "R2", "Fixed")[1],
stop_parameter = 0.05,
shrinkage = TRUE, alpha = 4/4, include_intercept = TRUE,
n_lambda = 50, tolerance = 1e-2, max_iter = 1e5, n_folds = 5,
model_weights = c("Equal", "Proportional", "Stacking")[1])
step.coefficients <- coef(step.out, group_index = 1:step.out$n_models)
step.predictions <- predict(step.out, x.test, group_index = 1:step.out$n_models)
mspe.step <- mean((step.predictions-y.test)^2)/sigma.epsilon^2