findROC {stepPenal} | R Documentation |
Compute the area under the ROC curve
Description
This function computes the numeric value of area under the ROC curve (AUC) with the trapezoidal rule. It is a wrapper function around the pRoc function in the roc package
Usage
findROC(Data, coeff)
Arguments
Data |
a data matrix; in the first column there should be the binary response variable y. If you give the training dataset it will calculate the in-sample AUC. If supplied with a new dataset then it will return the predictive AUC. |
coeff |
vector of coefficients |
Value
The area under the ROC curve, the sensitivity and specificity
See Also
Examples
## Not run:
set.seed(14)
beta <- c(3, 2, -1.6, -4)
noise <- 5
simData <- SimData(N=100,beta=beta, noise=noise, corr=FALSE)
stepPenal<- StepPenal(Data=simData, lamda=1.2, w=0.7)
(coeffP <- stepPenal$coeffP)
findROC(simData, coeff=coeffP)
## End(Not run)
[Package stepPenal version 0.2 Index]