SimData {stepPenal} | R Documentation |
Simulate data with normally distributed predictors and binary response
Description
Simulate data with normally distributed predictors and binary response
Usage
SimData(N, beta, noise, corr = TRUE, corr.effect = 0.5)
Arguments
N |
sample size |
beta |
coefficients (effect of informative predictors) |
noise |
variables (effect of uninformative predictors) |
corr |
Logical, if FALSE the function generates uncorrelated predictors, if TRUE the correlation between predictors is 0.5 by default and the user can supply a different value in the corr.effect argument. |
corr.effect |
the correlation between informative predictors. |
Details
The response y follows a Binomial distribution with probability= exp(X*beta)/(1+exp(X*beta))
Value
A data frame N x p, where p is the total number of informative and uninformative predictors. The first column of the dataframe is the binary response variable y
Examples
# simulate data with N=100 (sample size) and 23 predictors; 4 informative and 20 noise
set.seed(14)
beta <- c(3, 2, -1.6, -4)
noise <- 5
N <- 100
simData <- SimData(N=N, beta=beta, noise=noise, corr=FALSE)
[Package stepPenal version 0.2 Index]