mle_stcos {stcos} | R Documentation |
MLE for STCOS Model
Description
MLE for STCOS Model
Usage
mle_stcos(
z,
v,
H,
S,
K,
init = NULL,
optim_control = list(),
optim_method = "L-BFGS-B"
)
Arguments
z |
Vector which represents the outcome; assumed to be direct estimates from the survey. |
v |
Vector which represents direct variance estimates from the survey.
The diagonal of the matrix |
H |
Matrix of overlaps between source and fine-level supports. |
S |
Design matrix for basis decomposition. |
K |
Variance of the random coefficient |
init |
A list containing the initial values in the MCMC for
|
optim_control |
This is passed as the |
optim_method |
Method to be used for likelihood maximization by
|
Details
Maximize the likelihood of the STCOS model
f(\bm{z} \mid \bm{\mu}_B, \sigma_K^2, \sigma_\xi^2)
= \textrm{N}(\bm{z} \mid \bm{H} \bm{\mu}_B, \bm{\Delta}
),
\quad \bm{\Delta} = \sigma_\xi^2 \bm{I} + \bm{V} + \sigma_K^2 \bm{S} \bm{K} \bm{S}^\top,
by numerical maximization of the profile likelihood
\ell(\sigma_K^2, \sigma_\xi^2) =
-\frac{N}{2} \log(2 \pi) -\frac{1}{2} \log |\bm{\Delta}| -\frac{1}{2} (\bm{z} -
\bm{H} \hat{\bm{\mu}}_B)^\top \bm{\Delta}^{-1} (\bm{z} - \bm{H} \hat{\bm{\mu}}_B)
using
\hat{\bm{\mu}}_B = (\bm{H}^\top \bm{\Delta}^{-1} \bm{H})^{-1}
\bm{H}^\top \bm{\Delta}^{-1} \bm{z}.
Value
A list containing maximum likelihood estimates.
Examples
## Not run:
demo = prepare_stcos_demo()
mle_out = mle_stcos(demo$z, demo$v, demo$S, demo$H, demo$K)
sig2K_hat = mle_out$sig2K_hat
sig2xi_hat = mle_out$sig2xi_hat
mu_hat = mle_out$mu_hat
## End(Not run)