meta_analysis {statsExpressions}R Documentation

Random-effects meta-analysis

Description

Parametric, non-parametric, robust, and Bayesian random-effects meta-analysis.

Usage

meta_analysis(
  data,
  type = "parametric",
  random = "mixture",
  digits = 2L,
  conf.level = 0.95,
  ...
)

Arguments

data

A data frame. It must contain columns named estimate (effect sizes or outcomes) and std.error (corresponding standard errors). These two columns will be used:

  • as yi and sei arguments in metafor::rma() (for parametric test) or metaplus::metaplus() (for robust test)

  • as y and SE arguments in metaBMA::meta_random() (for Bayesian test).

type

A character specifying the type of statistical approach:

  • "parametric"

  • "nonparametric"

  • "robust"

  • "bayes"

You can specify just the initial letter.

random

The type of random effects distribution. One of "normal", "t-dist", "mixture", for standard normal, t-distribution or mixture of normals respectively.

digits

Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).

conf.level

Scalar between 0 and 1 (default: ⁠95%⁠ confidence/credible intervals, 0.95). If NULL, no confidence intervals will be computed.

...

Additional arguments passed to the respective meta-analysis function.

Value

The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):

For examples, see data frame output vignette.

Random-effects meta-analysis

The table below provides summary about:

Hypothesis testing and Effect size estimation

Type Test CI available? Function used
Parametric Pearson's correlation coefficient Yes correlation::correlation()
Non-parametric Spearman's rank correlation coefficient Yes correlation::correlation()
Robust Winsorized Pearson's correlation coefficient Yes correlation::correlation()
Bayesian Bayesian Pearson's correlation coefficient Yes correlation::correlation()

Citation

Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236

Note

Important: The function assumes that you have already downloaded the needed package ({metafor}, {metaplus}, or {metaBMA}) for meta-analysis. If they are not available, you will be asked to install them.

Examples


# setup
set.seed(123)
library(statsExpressions)



# let's use `mag` dataset from `{metaplus}`
data(mag, package = "metaplus")
dat <- dplyr::rename(mag, estimate = yi, std.error = sei)

# ----------------------- parametric -------------------------------------

meta_analysis(dat)



# ----------------------- robust ----------------------------------

meta_analysis(dat, type = "random", random = "normal")



# ----------------------- Bayesian ----------------------------------

meta_analysis(dat, type = "bayes")


[Package statsExpressions version 1.5.5 Index]