meta_analysis {statsExpressions} | R Documentation |
Random-effects meta-analysis
Description
Parametric, non-parametric, robust, and Bayesian random-effects meta-analysis.
Usage
meta_analysis(
data,
type = "parametric",
random = "mixture",
digits = 2L,
conf.level = 0.95,
...
)
Arguments
data |
A data frame. It must contain columns named
|
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
random |
The type of random effects distribution. One of "normal", "t-dist", "mixture", for standard normal, |
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
... |
Additional arguments passed to the respective meta-analysis function. |
Value
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
-
statistic
: the numeric value of a statistic -
df
: the numeric value of a parameter being modeled (often degrees of freedom for the test) -
df.error
anddf
: relevant only if the statistic in question has two degrees of freedom (e.g. anova) -
p.value
: the two-sided p-value associated with the observed statistic -
method
: the name of the inferential statistical test -
estimate
: estimated value of the effect size -
conf.low
: lower bound for the effect size estimate -
conf.high
: upper bound for the effect size estimate -
conf.level
: width of the confidence interval -
conf.method
: method used to compute confidence interval -
conf.distribution
: statistical distribution for the effect -
effectsize
: the name of the effect size -
n.obs
: number of observations -
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
Random-effects meta-analysis
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing and Effect size estimation
Type | Test | CI available? | Function used |
Parametric | Pearson's correlation coefficient | Yes | correlation::correlation() |
Non-parametric | Spearman's rank correlation coefficient | Yes | correlation::correlation() |
Robust | Winsorized Pearson's correlation coefficient | Yes | correlation::correlation() |
Bayesian | Bayesian Pearson's correlation coefficient | Yes | correlation::correlation() |
Citation
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
Note
Important: The function assumes that you have already downloaded the
needed package ({metafor}
, {metaplus}
, or {metaBMA}
) for meta-analysis.
If they are not available, you will be asked to install them.
Examples
# setup
set.seed(123)
library(statsExpressions)
# let's use `mag` dataset from `{metaplus}`
data(mag, package = "metaplus")
dat <- dplyr::rename(mag, estimate = yi, std.error = sei)
# ----------------------- parametric -------------------------------------
meta_analysis(dat)
# ----------------------- robust ----------------------------------
meta_analysis(dat, type = "random", random = "normal")
# ----------------------- Bayesian ----------------------------------
meta_analysis(dat, type = "bayes")