expectedDeviance {statmod} | R Documentation |
Expected Value of Scaled Unit Deviance for Linear Exponential Families
Description
Expected value and variance of the scaled unit deviance for common generalized linear model families.
Usage
expectedDeviance(mu, family="binomial", binom.size, nbinom.size, gamma.shape)
Arguments
mu |
numeric vector or matrix giving mean of response variable. |
family |
character string indicating the linear exponential family. Possible values are |
binom.size |
integer vector giving the number of binomial trials when |
nbinom.size |
numeric vector giving the negative binomial size parameter when |
gamma.shape |
numeric vector giving the gamma shape parameter when |
Details
For a generalized linear model (GLM), the scaled unit deviances can be computed using d <- f$dev.resids(y, mu, wt=1/phi)
where f
is the GLM family object, y
is the response variable, mu
is the vector of means and phi
is the vector of GLM dispersions (incorporating any prior weights).
The scaled unit deviances are often treated as being chiquare distributed on 1 df, so the mean should be 1 and the variance should be 2.
This distribution result only holds however when the saddlepoint approximation is accurate for the response variable distribution (Dunn and Smyth, 2018).
In other cases, the expected value and variance of the unit deviances can be far from the nominal values.
The expectedDeviance
function returns the exact mean and variance of the unit deviance for the usual GLM familes assuming that mu
is the true mean and phi
is the true dispersion.
When family
is "poisson"
, "binomial"
or "negative.binomial"
, the expected values and variances are computed using Chebyshev polynomial approximations.
When family = "Gamma"
, the function uses exact formulas derived by Smyth (1989).
Value
A list with the components
mean |
expected values |
variance |
variances |
both of which have the same length and dimensions as the input mu
.
Author(s)
Lizong Chen and Gordon Smyth
References
Dunn PK, Smyth GK (2018). Generalized linear models with examples in R. Springer, New York, NY. doi:10.1007/978-1-4419-0118-7
Smyth, G. K. (1989). Generalized linear models with varying dispersion. J. R. Statist. Soc. B, 51, 47-61. doi:10.1111/j.2517-6161.1989.tb01747.x
See Also
family
, meanval.digamma
, d2cumulant.digamma
.
Examples
# Poisson example
lambda <- 3
nsim <- 1e4
y <- rpois(nsim, lambda=lambda)
d <- poisson()$dev.resids(y=y, mu=rep(lambda,nsim), wt=1)
c(mean=mean(d), variance=var(d))
unlist(expectedDeviance(mu=lambda, family="poisson"))
# binomial example
n <- 10
p <- 0.01
y <- rbinom(nsim, prob=p, size=n)
d <- binomial()$dev.resids(y=y/n, mu=rep(p,nsim), wt=n)
c(mean=mean(d), variance=var(d))
unlist(expectedDeviance(mu=p, family="binomial", binom.size=n))
# gamma example
alpha <- 5
beta <- 2
y <- beta * rgamma(1e4, shape=alpha)
d <- Gamma()$dev.resids(y=y, mu=rep(alpha*beta,n), wt=alpha)
c(mean=mean(d), variance=var(d))
unlist(expectedDeviance(mu=alpha*beta, family="Gamma", gamma.shape=alpha))
# negative binomial example
library(MASS)
mu <- 10
phi <- 0.2
y <- rnbinom(nsim, mu=mu, size=1/phi)
f <- MASS::negative.binomial(theta=1/phi)
d <- f$dev.resids(y=y, mu=rep(mu,nsim), wt=1)
c(mean=mean(d), variance=var(d))
unlist(expectedDeviance(mu=mu, family="negative.binomial", nbinom.size=1/phi))
# binomial expected deviance tends to zero for p small:
p <- seq(from=0.001,to=0.11,len=200)
ed <- expectedDeviance(mu=p,family="binomial",binom.size=10)
plot(p,ed$mean,type="l")