sp.anogva {statGraph} | R Documentation |
Semi-parametric Analysis of Graph Variability (SP-ANOGVA)
Description
sp.anogva
statistically tests whether two or more graphs are
generated by the same model and set of parameters.
Usage
sp.anogva(Graphs, model, maxBoot = 100, ...)
Arguments
Graphs |
a list of undirected graphs.
If each graph has the attribute |
model |
A string that indicates one of the following models: 'ER' (Erdos-Renyi random graph model), 'GRG' (geometric random graph model), 'WS' (Watts-Strogatz random graph model), and 'BA' (Barabási-Albert random graph model). |
maxBoot |
integer indicating the number of bootstrap resamples (default
is |
... |
Other relevant parameters for |
Value
A list with class 'htest' containing the following components:
statistic: |
the F statistic of the test. |
p.value: |
the p-value of the test. |
method: |
a string indicating the used method. |
data.name: |
a string with the data's name(s). |
estimates: |
a vector containing the estimated parameters for each graph. |
References
Andre Fujita, Eduardo Silva Lira, Suzana de Siqueira Santos, Silvia Yumi Bando, Gabriela Eleuterio Soares, Daniel Yasumasa Takahashi. A semi-parametric statistical test to compare complex networks, Journal of Complex Networks, cnz028, https://doi.org/10.1093/comnet/cnz028
Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.
Examples
set.seed(1)
model <- 'ER'
G <- list()
# Under H0
G[[1]] <- igraph::sample_gnp(50, 0.5)
G[[2]] <- igraph::sample_gnp(50, 0.5)
G[[3]] <- igraph::sample_gnp(50, 0.5)
result1 <- sp.anogva(G, model, maxBoot = 10,eps=0.1)
result1
# Under H1
G[[1]] <- igraph::sample_gnp(50, 0.5)
G[[2]] <- igraph::sample_gnp(50, 0.75)
G[[3]] <- igraph::sample_gnp(50, 0.5)
result2 <- sp.anogva(G, model, maxBoot = 10,eps=0.1)
result2