graph.spectral.density {statGraph} | R Documentation |
Graph Spectral Density
Description
graph.spectral.density
returns the exact or degree-based spectral density
in the interval <from
,to
> by using npoints
discretization points.
Usage
graph.spectral.density(Graph, method = "diag", ...)
Arguments
Graph |
the undirected graph (igraph object).
If |
method |
String that specifies the method to obtain the spectral density. It can take two possible values 'diag' (Default) and 'fast'. If 'diag' is used then the exact spectral density is obtained, otherwise the degree-based spectral density is obtained. |
... |
Other relevant parameters to obtain the spectral density such as |
Value
A list with class 'statGraph' containing the following components:
method: |
a string indicating the used method. |
info: |
a string showing details about the method. |
data.name: |
a string with the data's name(s). |
x: |
a vector corresponding to the x axis coordinates of the density function. |
y: |
a vector corresponding to the y axis coordinates of the density function. |
from: |
a real number corresponding to the smallest value of the x axis. |
to: |
a real number corresponding to the largest value of the x axis. |
References
#' Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7*, e49949. doi:10.1371/journal.pone.0049949.
Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, *21*, 65-66.
Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.
Newman, M. E. J., Zhang, X., & Nadakuditi, R. R. (2019). Spectra of random networks with arbitrary degrees. Physical Review E, 99(4), 042309.
Examples
set.seed(1)
G <- igraph::sample_smallworld(dim = 1, size = 50, nei = 2, p = 0.2)
# Obtain the spectral density
density <- graph.spectral.density(Graph = G)
density