graph.model.selection {statGraph} | R Documentation |
Graph Model Selection
Description
graph.model.selection
selects the graph model that best approximates the
observed graph according to the Graph Information Criterion (GIC).
Usage
graph.model.selection(Graph, models = NULL, parameters = NULL, ...)
Arguments
Graph |
the undirected graph (igraph object).
If |
models |
either a vector of strings, or a list of functions: A vector of strings containing some of the following models: 'ER' (Erdos-Renyi random graph), 'GRG' (geometric random graph), 'KR' (k regular random graph), 'WS' (Watts-Strogatz model), and 'BA' (Barabási-Albert model). A list of functions. Each function returns a graph (igraph object) generated by a graph model and has two arguments: the graph size and the model parameter, in this order. If the argument |
parameters |
list of numeric vectors or list of lists. If a list of numeric vectors is given,
then each vector contains the values that will be considered for the parameter estimation of the
corresponding model. If a list of lists is given, then each list contains |
... |
Other relevant parameters for |
Value
A list with class 'statGraph' containing the following components:
method: |
a string indicating the used method. |
info: |
a string showing details about the method. |
model: |
the indice(s) or name(s) of the selected model(s), i. e. the model(s) that minimize(s) the Graph Information Criterion (GIC). |
estimates: |
a matrix in which each row corresponds to a model, the column 'param' corresponds to the parameter estimate, and the column 'GIC' corresponds to the Graph Information Criterion (GIC), i. e. the distance measure (Kullback-Leibler divergence by default) between the observed graph and the model. |
References
Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7*, e49949. doi:10.1371/journal.pone.0049949.
Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, *21*, 65-66.
Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.
Examples
## Example using an igraph object as input data
set.seed(1)
G <- igraph::sample_gnp(n=30, p=0.5)
# Using strings to indicate the graph models
result1 <- graph.model.selection(G, models=c('ER', 'WS'), eps = 0.5)
result1
## Using functions to describe the graph models
# Erdos-Renyi graph
model1 <- function(n, p) {
return(igraph::sample_gnp(n, p))
}
# Watts-Strogatz small-world graph
model2 <- function(n, pr, K=8) {
return(igraph::sample_smallworld(1, n, K, pr))
}
parameters <- list(seq(0.01, 0.99, 0.49), seq(0.01, 0.99, 0.49))
result2 <- graph.model.selection(G, list(model1, model2), parameters)
result2