graph.cor.test {statGraph} | R Documentation |
Test for Association / Correlation Between Paired Samples of Graphs
Description
graph.cor.test
tests for association between paired samples of graphs,
using Spearman's rho correlation coefficient.
Usage
graph.cor.test(Graphs1, Graphs2)
Arguments
Graphs1 |
a list of undirected graphs.
If each graph has the attribute |
Graphs2 |
a list of undirected graphs.
If each graph has the attribute |
Value
A list with class 'htest' containing the following components:
statistic: |
the value of the test statistic. |
p.value: |
the p-value of the test. |
method: |
a string indicating the used method. |
data.name: |
a string with the data's name(s). |
estimates: |
the estimated measure of association 'rho'. |
References
Fujita, A., Takahashi, D. Y., Balardin, J. B., Vidal, M. C. and Sato, J. R. (2017) Correlation between graphs with an application to brain network analysis. _Computational Statistics & Data Analysis_ *109*, 76-92.
Examples
library(mvtnorm)
set.seed(1)
G1 <- G2 <- list()
p <- mvtnorm::rmvnorm(50, mean=c(0,0), sigma=matrix(c(1, 0.5, 0.5, 1), 2, 2))
ma <- max(p)
mi <- min(p)
p[,1] <- (p[,1] - mi)/(ma - mi)
p[,2] <- (p[,2] - mi)/(ma - mi)
for (i in 1:50) {
G1[[i]] <- igraph::sample_gnp(50, p[i,1])
G2[[i]] <- igraph::sample_gnp(50, p[i,2])
}
graph.cor.test(G1, G2)