graph.cem {statGraph} | R Documentation |
Graph Clustering Expectation-Maximization (gCEM)
Description
graph.cem
clusters graphs following an expectation-maximization algorithm based
on the Kullback-Leibler divergence between the spectral densities of the
graph and of the random graph model.
Usage
graph.cem(Graphs, model, k, max_iter = 10, ...)
Arguments
Graphs |
a list of undirected graphs.
If each graph has the attribute |
model |
a string that indicates one of the following random graph models: 'ER' (Erdos-Renyi random graph), 'GRG' (geometric random graph), 'KR' (k regular graph), 'WS' (Watts-Strogatz model), and 'BA' (Barabási-Albert model). |
k |
an integer specifying the number of clusters. |
max_iter |
the maximum number of expectation-maximization steps to execute. |
... |
Other relevant parameters for |
Value
A list with class 'statGraph' containing the following components:
method: |
a string indicating the used method. |
info: |
a string showing details about the method. |
data.name: |
a string with the data's name(s). |
cluster: |
a vector of the same length of |
parameters: |
a vector containing the estimated parameters for the groups.
It has the length equals to |
References
Celeux, Gilles, and Gerard Govaert. 'Gaussian parsimonious clustering models.' Pattern recognition 28.5 (1995): 781-793.
Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.
Examples
set.seed(1)
g <- list()
for(i in 1:2){
g[[i]] <- igraph::sample_gnp(n=10, p=0.5)
}
for(i in 3:4){
g[[i]] <- igraph::sample_gnp(n=10, p=1)
}
res <- graph.cem(g, model='ER', k=2, max_iter=1,eps=0.1)
res