anogva {statGraph} | R Documentation |
Analysis Of Graph Variability (ANOGVA)
Description
anogva
statistically tests whether two or more sets of graphs are generated
by the same random graph model. It is a generalization of the takahashi.test
function.
Usage
anogva(Graphs, labels, maxBoot = 1000, dist = "KL", ...)
Arguments
Graphs |
a list of undirected graphs.
If each graph has the attribute |
labels |
an array of integers indicating the labels of each graph. |
maxBoot |
integer indicating the number of bootstrap resamplings (default |
dist |
string indicating if you want to use the 'KL' (default), 'JS' , 'L1' or 'L2' distances. 'KL' means Kullback-Leibler divergence. 'JS' means Jensen-Shannon divergence. |
... |
Other relevant parameters for |
Value
A list with class 'htest' containing the following components:
statistic: |
the statistic of the test. |
p.value: |
the p-value of the test. |
method: |
a string indicating the used method. |
data.name: |
a string with the data's name(s). |
References
Fujita, A., Vidal, M. C. and Takahashi, D. Y. (2017) A Statistical Method to Distinguish Functional Brain Networks. _Front. Neurosci._, *11*, 66. doi:10.3389/fnins.2017.00066.
Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7*, e49949. doi:10.1371/journal.pone.0049949.
Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, *21*, 65-66.
Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.
Examples
set.seed(1)
g1 <- g2 <- g3 <- list()
for (i in 1:20) {
g1[[i]] <- igraph::sample_gnp(50, 0.50)
g2[[i]] <- igraph::sample_gnp(50, 0.50)
g3[[i]] <- igraph::sample_gnp(50, 0.52)
}
G <- c(g1, g2, g3)
label <- c(rep(1,20),rep(2,20),rep(3,20))
result <- anogva(G, label, maxBoot=50)
result