VLSTARjoint {starvars}R Documentation

Joint linearity test

Description

This function allows the user to test linearity against a Vector Smooth Transition Autoregressive Model with a single transition variable.

Usage

VLSTARjoint(y, exo = NULL, st, st.choice = FALSE, alpha = 0.05)

Arguments

y

data.frame or matrix of dependent variables of dimension (Txn)

exo

(optional) data.frame or matrix of exogenous variables of dimension (Txk)

st

single transition variable for all the equation of dimension (Tx1)

st.choice

boolean identifying whether the transition variable should be selected from a matrix of R potential variables of dimension (TxR)

alpha

Confidence level

Details

Given a VLSTAR model with a unique transition variable, s1t=s2t==sn~t=sts_{1t} = s_{2t} = \dots = s_{\widetilde{n}t} = s_t, a generalization of the linearity test presented in Luukkonen, Saikkonen and Terasvirta (1988) may be implemented.

Assuming a 2-state VLSTAR model, such that

yt=B1zt+GtB2zt+εt.y_t = B_{1}z_t + G_tB_{2}z_t + \varepsilon_t.

Where the null H0:γj=0H_{0} : \gamma_{j} = 0, j=1,,n~j = 1, \dots, \widetilde{n}, is such that Gt(1/2)/n~G_t \equiv (1/2)/\widetilde{n} and the previous Equation is linear. When the null cannot be rejected, an identification problem of the parameter cjc_{j} in the transition function emerges, that can be solved through a first-order Taylor expansion around γj=0\gamma_{j} = 0.

The approximation of the logistic function with a first-order Taylor expansion is given by

G(st;γj,cj)=(1/2)+(1/4)γj(stcj)+rjtG(s_t; \gamma_{j},c_{j}) = (1/2) + (1/4)\gamma_{j}(s_t-c_{j}) + r_{jt}

=ajst+bj+rjt= a_{j}s_t + b_{j} + r_{jt}

where aj=γj/4a_{j} = \gamma_{j}/4, bj=1/2ajcjb_{j} = 1/2 - a_{j}c_{j} and rjr_{j} is the error of the approximation. If GtG_t is specified as follows

Gt=diag{a1st+b1+r1t,,an~st+bn~+rn~t}G_t = diag\big\{a_{1}s_t + b_{1} + r_{1t}, \dots, a_{\widetilde{n}}s_t+b_{\widetilde{n}} + r_{\widetilde{n}t}\big\}

=Ast+B+Rt= As_t + B + R_t

where A=diag(a1,,an~)A = diag(a_{1}, \dots, a_{\widetilde{n}}), B=diag(b1,,bn~)B = diag(b_{1},\dots, b_{\widetilde{n}}) e Rt=diag(r1t,,rn~t)R_t = diag(r_{1t}, \dots, r_{\widetilde{n}t}), yty_t can be written as

yt=B1zt+(Ast+B+Rt)B2zt+εty_t = B_{1}z_t + (As_t + B + R_t)B_{2}z_t+\varepsilon_t

=(B1+BB2)zt+AB2ztst+RtB2zt+εt= (B_{1} + BB_{2})z_t+AB_{2}z_ts_t + R_tB_{2}z_t + \varepsilon_t

=Θ0zt+Θ1ztst+εt= \Theta_{0}z_t + \Theta_{1}z_ts_t+\varepsilon_t^{*}

where Θ0=B1+B2B\Theta_{0} = B_{1} + B_{2}'B, Θ1=B2A\Theta_{1} = B_{2}'A and εt=RtB2+εt\varepsilon_t^{*} = R_tB_{2} + \varepsilon_t. Under the null, Θ0=B1\Theta_{0} = B_{1} and Θ1=0\Theta_{1} = 0, while the previous model is linear, with εt=εt\varepsilon_t^{*} = \varepsilon_t. It follows that the Lagrange multiplier test, under the null, is derived from the score

logL(θ~)Θ1=t=1Tztst(ytB~1zt)Ω~1=S(YZB~1)Ω~1,\frac{\partial \log L(\widetilde{\theta})}{\partial \Theta_{1}} = \sum_{t=1}^{T}z_ts_t(y_t - \widetilde{B}_{1}z_t)'\widetilde{\Omega}^{-1} = S(Y - Z\widetilde{B}_{1})\widetilde{\Omega}^{-1},

where

S=z1s1ztstS = z_{1}'s_{1}\\\vdots\\ z_t's_t

and where B~1\widetilde{B}_{1} and Ω~\widetilde{\Omega} are estimated from the model in H0H_{0}. If PZ=Z(ZZ)1ZP_{Z} = Z(Z'Z)^{-1}Z' is the projection matrix of Z, the LM test is specified as follows

LM=tr{Ω~1(YZB~1)S[S(ItPZ)S]1S(YZB~1)}.LM = tr\big\{\widetilde{\Omega}^{-1}(Y - Z\widetilde{B}_{1})'S\big[S'(I_t - P_{Z})S\big]^{-1}S'(Y-Z\widetilde{B}_{1})\big\}.

Under the null, the test statistics is distributed as a χ2\chi^{2} with n~(pn~+k)\widetilde{n}(p\cdot\widetilde{n} + k) degrees of freedom.

Value

An object of class VLSTARjoint.

Author(s)

Andrea Bucci

References

Luukkonen R., Saikkonen P. and Terasvirta T. (1988), Testing Linearity Against Smooth Transition Autoregressive Models. Biometrika, 75: 491-499

Terasvirta T. and Yang Y. (2015), Linearity and Misspecification Tests for Vector Smooth Transition Regression Models. CREATES Research Paper 2014-4


[Package starvars version 1.1.10 Index]