catboost_predict {stackgbm} | R Documentation |
Predict based on the model
Description
Predict based on the model
Usage
catboost_predict(model, pool, prediction_type = "Probability", ...)
Arguments
model |
The trained model. |
pool |
The dataset to predict on. |
prediction_type |
Prediction type. |
... |
Additional parameters. |
Value
Predicted values.
Examples
sim_data <- msaenet::msaenet.sim.binomial(
n = 100,
p = 10,
rho = 0.6,
coef = rnorm(5, mean = 0, sd = 10),
snr = 1,
p.train = 0.8,
seed = 42
)
x_train <- catboost_load_pool(data = sim_data$x.tr, label = sim_data$y.tr)
x_test <- catboost_load_pool(data = sim_data$x.te, label = NULL)
fit <- catboost_train(
x_train,
NULL,
params = list(
loss_function = "Logloss",
iterations = 100,
depth = 3,
logging_level = "Silent"
)
)
catboost_predict(fit, x_test)
[Package stackgbm version 0.1.0 Index]