stabilityDavis {stabm} | R Documentation |
Stability Measure Davis
Description
The stability of feature selection is defined as the robustness of the sets of selected features with respect to small variations in the data on which the feature selection is conducted. To quantify stability, several datasets from the same data generating process can be used. Alternatively, a single dataset can be split into parts by resampling. Either way, all datasets used for feature selection must contain exactly the same features. The feature selection method of interest is applied on all of the datasets and the sets of chosen features are recorded. The stability of the feature selection is assessed based on the sets of chosen features using stability measures.
Usage
stabilityDavis(
features,
p,
correction.for.chance = "none",
N = 10000,
impute.na = NULL,
penalty = 0
)
Arguments
features |
|
p |
|
correction.for.chance |
|
N |
|
impute.na |
|
penalty |
|
Details
The stability measure is defined as (see Notation)
\max \left\{ 0, \frac{1}{|V|} \sum_{j=1}^p \frac{h_j}{m} - \frac{penalty}{p}
\cdot \mathop{\mathrm{median}} \{ |V_1|, \ldots, |V_m| \} \right\}.
Value
numeric(1)
Stability value.
Notation
For the definition of all stability measures in this package,
the following notation is used:
Let V_1, \ldots, V_m
denote the sets of chosen features
for the m
datasets, i.e. features
has length m
and
V_i
is a set which contains the i
-th entry of features
.
Furthermore, let h_j
denote the number of sets that contain feature
X_j
so that h_j
is the absolute frequency with which feature X_j
is chosen.
Analogously, let h_{ij}
denote the number of sets that include both X_i
and X_j
.
Also, let q = \sum_{j=1}^p h_j = \sum_{i=1}^m |V_i|
and V = \bigcup_{i=1}^m V_i
.
References
Davis CA, Gerick F, Hintermair V, Friedel CC, Fundel K, Kuffner R, Zimmer R (2006). “Reliable gene signatures for microarray classification: assessment of stability and performance.” Bioinformatics, 22(19), 2356–2363. doi:10.1093/bioinformatics/btl400.
Bommert A, Rahnenführer J, Lang M (2017). “A Multicriteria Approach to Find Predictive and Sparse Models with Stable Feature Selection for High-Dimensional Data.” Computational and Mathematical Methods in Medicine, 2017, 1–18. doi:10.1155/2017/7907163.
Bommert A (2020). Integration of Feature Selection Stability in Model Fitting. Ph.D. thesis, TU Dortmund University, Germany. doi:10.17877/DE290R-21906.
See Also
Examples
feats = list(1:3, 1:4, 1:5)
stabilityDavis(features = feats, p = 10)