shrinkcat.stat {st} | R Documentation |
Correlation-Adjusted t Score (CAT score)
Description
shrinkcat.stat
and shrinkcat.fun
compute a shrinkage
estimate of the “correlation-adjusted t score”
of Zuber and Strimmer (2009).
Usage
shrinkcat.stat(X, L, lambda, lambda.var, lambda.freqs, var.equal=TRUE,
paired=FALSE, verbose=TRUE)
shrinkcat.fun(L, lambda, lambda.var, lambda.freqs, var.equal=TRUE,
verbose=TRUE)
Arguments
X |
data matrix. Note that the columns correspond to variables (“genes”) and the rows to samples. |
L |
factor with class labels for the two groups. If only a single label is given then a one-sample CAT score against 0 is computed. |
lambda |
Shrinkage intensity for the correlation matrix. If not specified it is
estimated from the data. |
lambda.var |
Shrinkage intensity for the variances. If not specified it is
estimated from the data. |
lambda.freqs |
Shrinkage intensity for the frequencies. If not specified it is
estimated from the data. |
var.equal |
assume equal (default) or unequal variances in each group. |
paired |
compute paired CAT score (default is to use unpaired CAT score). |
verbose |
print out some (more or less useful) information during computation. |
Details
The CAT (“correlation-adjusted t”) score is the product of the square root of the inverse correlation matrix with a vector of t scores. The CAT score thus describes the contribution of each individual feature in separating the two groups, after removing the effect of all other features.
In Zuber and Strimmer (2009)
it is shown that the CAT score is
a natural criterion to rank features in the presence of correlation.
If there is no correlation, the CAT score reduces to the usual t score
(hence in this case the estimate from shrinkcat.stat
equals that from shrinkt.stat
).
The function catscore
implements multi-class CAT scores.
Value
shrinkcat.stat
returns a vector containing a shrinkage estimate of the
“CAT score” for each variable/gene.
The corresponding shrinkcat.fun
functions return a function that
computes the cat score when applied to a data matrix
(this is very useful for simulations).
The scale factor in the ”shrinkage CAT” statistic is computed from the estimated frequencies
(to use the standard empirical scale factor set lambda.freqs=0
).
Author(s)
Verena Zuber and Korbinian Strimmer (https://strimmerlab.github.io).
References
Zuber, V., and K. Strimmer. 2009. Gene ranking and biomarker discovery under correlation. Bioinformatics 25: 2700-2707. <DOI:10.1093/bioinformatics/btp460>
See Also
catscore
, shrinkt.stat
, cst.stat
, lait.stat
.
Examples
# load st library
library("st")
# prostate data set
data(singh2002)
X = singh2002$x
L = singh2002$y
dim(X) # 102 6033
length(L) # 102
# shrinkage cat statistic
score = shrinkcat.stat(X, L)
idx = order(score^2, decreasing=TRUE)
idx[1:10]
# 610 364 1720 3647 3375 332 3282 3991 1557 914
# compute q-values and local false discovery rates
library("fdrtool")
fdr.out = fdrtool(as.vector(score))
sum(fdr.out$qval < 0.05)
sum(fdr.out$lfdr < 0.2)
# compared with:
# shrinkage t statistic
score = shrinkt.stat(X, L)
idx = order(score^2, decreasing=TRUE)
idx[1:10]
# 610 1720 3940 914 364 332 3647 4331 579 1068
# shrinkage CAT score with zero correlation among predictors
# is the same as shrinkage t
score2 = shrinkcat.stat(X, L, lambda=1)
sum((score2-score)^2)
# Student t statistic
score = studentt.stat(X, L)
idx = order(score^2, decreasing=TRUE)
idx[1:10]
# 610 1720 364 332 914 3940 4546 1068 579 4331
# shrinkage CAT score with zero correlation and no shrinkage
# is the same as student t
score2 = shrinkcat.stat(X, L, lambda=1, lambda.var=0, lambda.freqs=0,
verbose=FALSE)
sum((score2-score)^2)
# difference of means ("Fold Change")
score = diffmean.stat(X, L)
idx = order(abs(score), decreasing=TRUE)
idx[1:10]
# 735 610 694 298 698 292 739 3940 702 721
## paired CAT score
# we drop two cancer cases to make samples size equal in
# the two groups to allow to compute paired statistic
X = X[1:100,]
L = L[1:100]
sum(L=="cancer") # 50
sum(L=="healthy") # 50
# paired shrinkage CAT score
scat.paired = shrinkcat.stat(X, L, paired=TRUE)
# for zero correlation the paired shrinkage CAT score
# reduces to the paired shrinkage t score
score = shrinkt.stat(X, L, paired=TRUE, verbose=FALSE)
score2 = shrinkcat.stat(X, L, lambda=1, paired=TRUE, verbose=FALSE)
sum((score-score2)^2)