calc_gradient {sstvars} | R Documentation |
Calculate gradient or Hessian matrix
Description
calc_gradient
or calc_hessian
calculates the gradient or Hessian matrix
of the given function at the given point using central difference numerical approximation.
get_gradient
or get_hessian
calculates the gradient or Hessian matrix of the
log-likelihood function at the parameter estimates of a class 'stvar'
object. get_soc
returns eigenvalues of the Hessian matrix, and get_foc
is the same as get_gradient
but named conveniently.
Usage
calc_gradient(x, fn, h = 6e-06, ...)
calc_hessian(x, fn, h = 6e-06, ...)
get_gradient(stvar)
get_hessian(stvar)
get_foc(stvar)
get_soc(stvar)
Arguments
x |
a numeric vector specifying the point where the gradient or Hessian should be calculated. |
fn |
a function that takes in argument |
h |
difference used to approximate the derivatives. |
... |
other arguments passed to |
stvar |
object of class |
Details
In particular, the functions get_foc
and get_soc
can be used to check whether
the found estimates denote a (local) maximum point, a saddle point, or something else. Note that
profile log-likelihood functions can be conveniently plotted with the function profile_logliks
.
Value
Gradient functions return numerical approximation of the gradient and Hessian functions return
numerical approximation of the Hessian. get_soc
returns eigenvalues of the Hessian matrix.
Warning
No argument checks!
Examples
# Create a simple function:
foo <- function(x) x^2 + x
# Calculate the gradient at x=1 and x=-0.5:
calc_gradient(x=1, fn=foo)
calc_gradient(x=-0.5, fn=foo)
# Create a more complicated function
foo <- function(x, a, b) a*x[1]^2 - b*x[2]^2
# Calculate the gradient at x=c(1, 2) with parameter values a=0.3 and b=0.1:
calc_gradient(x=c(1, 2), fn=foo, a=0.3, b=0.1)
# Create a linear Gaussian VAR p=1 model:
theta_112 <- c(0.649526, 0.066507, 0.288526, 0.021767, -0.144024, 0.897103,
0.601786, -0.002945, 0.067224)
mod112 <- STVAR(data=gdpdef, p=1, M=1, params=theta_112)
# Calculate the gradient of the log-likelihood function about the parameter values:
get_foc(mod112)
# Calculate the eigenvalues of the Hessian matrix of the log-likelihood function
# about the parameter values:
get_soc(mod112)