ssfa {ssfa} | R Documentation |
Spatial stochastic frontier estimation
Description
This function estimates the Spatial Stochastic Frontier model introduced by Fusco and Vidoli (2013) in the following form:
log(y_{i}) = log(f(x_{i};\beta_i)) +v_{i}-u_{i}
u_{i}=\rho \sum_{i}w_{i.}u_{i} + \widetilde{u_{i}}
where y_i
are the outputs, x_i
the inputs, v_i
the stochastic noise, u_{i}
the inefficiency term, rho
the spatial lag, w_{i.}
a standardized row of the spatial weights matrix and \widetilde{u_{i}}
the stochastic noise of the inefficiency term.
Usage
ssfa(formula, data = NULL, data_w = NULL, intercept = TRUE, pars = NULL, par_rho = TRUE,
form = "cost")
Arguments
formula |
an object of class |
data |
an optional data frame containing the variables in the model. |
data_w |
a data frame containing the spatial weight matrix. |
intercept |
logical. If true the model includes intercept. |
pars |
initial values for the parameters to be estimated. |
par_rho |
logical. If true the function estimates the Spatial Stochastic Frontier (SSFA) otherwise the classical Stochastic Frontier (SFA). |
form |
specifies the form of the frontier model as "cost" or "production". |
Value
ssfa
returns the following objects of class ssfa
:
y |
the dependent variable. |
x |
the covariates. |
X |
the model matrix. |
coef |
the estimated coefficients. |
sc |
the form of the frontier model estimated (-1 = cost, 1 = production). |
hess |
a symmetric matrix giving an estimate of the Hessian at the solution found. |
logLik |
the value of the log likelihood function. |
ols |
the linear model for the LR-test. |
sigmau2 |
the estimation of sigmau2 (only if par_rho=FALSE): value of inefficiency variance. |
sigmau2_dmu |
the estimation of sigmau2_dmu (only if par_rho=TRUE): value of the part of the inefficiency variance due to DMU's specificities. |
sigmau2_sar |
the estimation of sigmau2_sar: value of the part of the inefficiency variance due to the spatial correlation. |
sigmav2 |
the estimation of sigmav2: value of the stochastic error variance. |
sigma2 |
the estimation of sigma2: value of the total variance. |
rho |
the estimation of the spatial lag parameter rho. |
fun |
the distribution of the inefficiency term u. |
list_w |
a listw object from |
Note
NOTE 1: In this version the distribution of the inefficiency term u
is only "half-normal".
NOTE 2: The method used to maximize the log likelihood function is the Newton-Raphson. Please see the R function maxNR
of the maxLik
package for details (Henningsen and Toomet (2011)).
NOTE 3: Please note that the classical SFA inefficiency variance sigmau2
, in the SSFA, is decomposed into sigmau2_dmu
and sigmau2_sar
, respectively the part of inefficiency variance due to DMU's specificities and to the spatial dependence, i.e. sigmau2 = sigmau2_dmu + sigmau2_sar
and consequently the total variance is given by sigma2 = sigmau2_dmu + sigmau2_sar + sigmav2
.
Author(s)
Fusco E. and Vidoli F.
References
Battese, G. E., and T. J. Coelli (1995). A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empirical Economics 20(2): 325-332.
Fusco, E. and Vidoli, F. (2013). Spatial stochastic frontier models: controlling spatial global and local heterogeneity, International Review of Applied Economics, 27(5) 679-694.
Fusco, E. (2020). Spatial Dependence in Efficiency Parametric Models: A Generalization and Simulation Studies, "Scienze Regionali, Italian Journal of Regional Science" Speciale/2021, 595-618.
Kumbhakar, S. C., and C. A. K. Lovell (2000). Stochastic Frontier Analysis, Cambridge University Press.
Henningsen, A. and Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458.
Examples
library(ssfa)
data(SSFA_example_data)
data(Italian_W)
ssfa <- ssfa(log_y ~ log_x, data = SSFA_example_data,
data_w=Italian_W, form = "production", par_rho=TRUE)
### SSFA total variance decomposition
sigma2 = ssfa$sigmau2_dmu + ssfa$sigmau2_sar + ssfa$sigmav2
sigma2
ssfa$sigma2