generate_data {ssMousetrack} | R Documentation |
Generate datasets according to the model structure
Description
Generate datasets according to the model structure
Usage
generate_data(
M = 100,
N = 61,
I = 10,
J = 12,
K = c(4),
Z.type = c("symmetric"),
Z.contrast = "treatment",
Z.formula = NULL,
sigmax = 1,
lambda = 1,
yT = pi/4,
yD = (3 * pi)/4,
kappa_bnds = c(120, 300),
priors = "default",
gfunction = c("logistic", "gompertz"),
...
)
Arguments
M |
(integer) number of simulated datasets |
N |
(integer) length of the Y-trajectories |
I |
(integer) number of individuals |
J |
(integer) number of trials |
K |
(array of integers) list of length Q of the number of levels for each categorical variable |
Z.type |
(array of characters) list of length Q of the methods (symmetric or random) to generate the matrix (see |
Z.contrast |
(character) type of contrasts (default: treatment) for the model matrix Z (see |
Z.formula |
(character) a formula of the contrasts for the model matrix Z (see |
sigmax |
(numeric) fixed value for the model parameter sigmax |
lambda |
(numeric) fixed value for the model parameter lambda |
yT |
(numeric) position in angles of the target |
yD |
(numeric) position in angles of the distractor |
kappa_bnds |
(array) array containing the lower and upper bounds for the kappa parameter ( |
priors |
(list) a list of arguments specifying priors for each parameter involved in the model (see |
gfunction |
(character) type of link function between latent states and observed data: 'logistic', 'gompertz' ( |
... |
other stan arguments (e.g., 'init', 'algorithm', 'sample_file'. See |
Details
The function generates simulated datasets via Stan according to the model structure.
Value
a datalist containing simulated data and parameters
Examples
## Not run:
## Generate mouse-tracking data for an univariate experimental design
## with K = 3 categorical levels, J = 30 trials, I = 8 subjects
X1 <- generate_data(I=5,J=12,K=3,Z.formula="~Z1",M=50)
## Generate mouse-tracking data for an univariate experimental design
## by varying priors of parameters
priors_list = list("normal(0,1)T(0,Inf)","normal(0,1)","normal(-2,0.5)")
X1 <- generate_data(I=5,J=12,K=3,Z.formula="~Z1",M=50,priors=priors_list)
## Generate mouse-tracking data with two experimental factors Z1 and Z2, J = 9 trials,
## K_Z1 = 3, K_Z2 = 3, I = 5 subjects
X2 <- generate_data(I=5,J=9,K=c(3,3),Z.formula="~Z1*Z2",
Z.type=c("symmetric","random"),M=50) # design with interaction
## End(Not run)