transFun {spsh} | R Documentation |
Parameter Transformation and Back-transformation
Description
Enables the transformation and backtransformation of parameters. This is widely considered advantageous during parameter estimation as the parameter space in the transformed is well-behaved, e.g. with normally distributed posteriors.
Usage
transFun(par.vec, trans.L)
Arguments
par.vec |
Vector of |
trans.L |
list of |
Details
Transformation rules are:
log10 \alpha_i,log10 n_i-1,log10 Ks,log10 \omega,log10 Ksc, and log10 Ksnc
.
Value
Returns transformed parameters as specificef by trans.L.
Note
The function is used to transform the parameter space and enabling optimisation or MCMC sampling to be more efficient.
Author(s)
Tobias KD Weber , tobias.weber@uni-hohenheim.de
Examples
# van Genuchten-Mualem Model parameters
parL <- list("p" = c("thr"= 0.05, "ths" = 0.45, "alf1" = 0.01, "n" = 2, "Ks" = 100, "tau" = .5),
"psel" = c(1, 1, 0, 1, 1, 1),
"plo" = c(0.001 , 0.2, 0.001, 1.1, 1, -2),
"pup" = c(0.3, 0.95, 1, 10, 1e4, 10)
)
# Two lists, one with function to transform, the other to back-transform model parameters
ptransfit <- c(function(x)x, function(x)x,log10,function(x)log10(x-1),log10, function(x)x)
pretransfit <- c(function(x)x, function(x)x,function(x)10^x,
function(x)10^x+1,function(x)10^x,function(x)x)
# Transform
p_trans <- transFun(parL$p, ptransfit)