gofFun {spsh} | R Documentation |
Goodness-of-fit and Information Criteria
Description
Calculates goodness-of-fit criteria and the likelihood-based Akaike and Bayesian Information Criterion based on a given parameter set, typically from the estimation procedure.
Usage
gofFun(
phat,
shpmodel = "01110",
retdata = NULL,
condata = NULL,
weight,
psel,
ivap.query = NULL,
hclip.query = FALSE
)
Arguments
phat |
Vector of non-transformed (back-transformed) model parameters after estimation, i.e. the best fit or maximum likelihood estimate. |
shpmodel |
Character specifying the soil hydraulic property model. |
retdata |
Dataframe or matrix with 2 columns. The first with pressure head values in log10 [cm], i.e. pF values, and the second with volumetric water contents in [cm cm-3]. |
condata |
Dataframe or matrix with 2 columns. The first with pressure head values in log10 [cm], i.e. pF values, and the second with hydraulic conductivity values log10 [cm d-1]. |
weight |
List of the model residual weights used or estimated by the parameter estimation scheme, to calculate the weighted statistical analyses. |
psel |
Vector specifying the selected parameters for the parameter estimation from |
ivap.query |
Specification of ivap method, if FALSE selected, no isothermal vapour conductivity is consideredSee |
hclip.query |
Implemented purely for future compatability. Currently no use. See |
Details
Output for data groups.
th | list with goodness of fit statistics for the retention curve see below |
logKh | list with output same as th but for the log10 fitted conductivity curve |
combined | list with AIC , AICc , and BIC calculated for the multi-objective function if arguments retdata and condata are both !NULL |
Statistical analyses of the inverse modelling results.
me | mean (weighted) error |
mae | mean absolute (weighted) error |
mse | mean squared (weighted) error |
rss | sum of squared (weighted) errors |
rmse | root mean squared (weighted) error |
AIC | Akaike Information Criteria |
AICc | corrected Akaike Information Criteria |
BIC | Bayesian Information Criteria |
m | number of observations |
Author(s)
Tobias KD Weber , tobias.weber@uni-hohenheim.de
References
Höge M, Wöhling T, Nowak W (2018). “A Primer for Model Selection: The Decisive Role of Model Complexity.” Water Resources Research, 54(3), 1688–1715. doi: 10.1002/2017WR021902.
Examples
data("shpdata1")
retdata <- shpdata1$TS1$wrc
condata <- shpdata1$TS1$hcc
condata <- condata[!is.na(condata[,1]),]
# Parameter list
parL <- list("p" = c("thr"= 0.05, "ths" = 0.45, "alf1" = 0.01, "n" = 2, "Ks" = 100, "tau" = .5),
"psel" = c(1, 1, 0, 1, 1, 1),
"plo" = c(0.001 , 0.2, 0.001, 1.1, 1, -2),
"pup" = c(0.3, 0.95, 1, 10, 1e4, 10)
)
# Calulation of the goodness of fit.
gofL <-gofFun(parL$p, shpmodel = "01110", retdata = retdata, condata = condata,
weight = weightFun(weightmethod = "fix1"), parL$psel,
ivap.query = NULL, hclip.query = FALSE)