KvapFun {spsh} | R Documentation |
Calculates the Isothermal Water Vapour Conductivity
Description
Calculates the isothermal vapour conductivity as a function of modelled volumetric air content. Different models are implemented enabling the calculation of the relative gas diffusion coefficient (Ds/Do), based on different expressions for an effective tortuosity.
Usage
KvapFun(
p,
por = p[2],
retFun = NA,
theta = NA,
model = "MQ61",
Temp = 20,
m = 3,
pF = seq(-3, 7, length = 501),
output = "log10",
...
)
Arguments
p |
vector of soil hydraulic property model parameters, cf resp soil hydraulic property model for details. | |||||||||||||||||||
por |
skalar value giving the fraction of a porous' media porosity [ - ]( value between [0, 1] ), defaults to the saturated water content. | |||||||||||||||||||
retFun |
soil hydraulic property function has to be specified if models | |||||||||||||||||||
theta |
vector of numerical volumetric water contents [0,1] at which the air content is to be calculated. | |||||||||||||||||||
model |
Implemented models (specify as character):
| |||||||||||||||||||
Temp |
Soil tempereature [ deg C ], defaults to 20. | |||||||||||||||||||
m |
| |||||||||||||||||||
pF |
monotonically increasing pF values, defined as log10(| pressure head [ cm ]). | |||||||||||||||||||
output |
Defaults to | |||||||||||||||||||
... |
more arguments to be passed to |
Details
More reading on the models reference is made to suggested in (Weber et al. 2019)
Author(s)
Tobias KD Weber , tobias.weber@uni-hohenheim.de
References
Weber TK, Durner W, Streck T, Diamantopoulos E (2019).
“A modular framework for modelling unsaturated soil hydraulic properties over the full moisture range.”
Water Resources Research.
ISSN 0043-1397, doi: 10.1029/2018WR024584.
Buckingham, E. (1904). Contributions to Our Knowledge of the Aeration Status of Soils, Bulletin 25, USDA Bureau of Soils, Washington, DC.
Grable, A.R.; Siemer, E.G. (1968).Effects of Bulk Density, Aggregate Size, and Soil Water Suction on Oxygen Diffusion, Redox Potentials, and Elongation of Corn Roots. Soil Sci. Soc. Am. Proc., 32, pp. 180-186. <doi:10.2136/sssaj1968.03615995003200020011x>.
Lai, S.H.; Tiedje J.M.; Erickson, E. (1976). In situ Measurement of Gas Diffusion Coefficient in Soils. Soil Sci. Soc. Am. J., 40, pp. 3-6. <doi:10.2136/sssaj1976.03615995004000010006x>.
Moldrup, P.; Olesen, T.; Rolston, D.E.; and Yamaguchi, T. (1997). Modeling Diffusion and Reaction in Soils: Vii. Predicting Gas and Ion Diffusivity in Undisturbed and Sieved Soils. Soil Science. 162 (9): pp. 632-640.
Moldrup, P.; Olesen, T.; Yoshikawa, S.; Komatsu, T.; and Rolston, D.E. (2004). Three-Porosity Model for Predicting the Gas Diffusion Coefficient in Undisturbed Soil. Soil Sci. Soc. Am. J. 68 (3).pp. 750-759. <doi:10.2136/sssaj2004.7500>.
Moldrup, P.; Olesen, T.; Yoshikawa, S.; Komatsu, T.; and Rolston, D.E. (2005). Predictive-Descriptive Models for Gas and Solute Diffusion Coefficients in Variably Saturated Porous Media Coupled to Pore-Size Distribution: II. Gas Diffusivity in Undisturbed Soil. Soil Sci., 170, pp. 854-866. <doi:10.1097/01.ss.0000196768.44165.1f>.
Millington, R.J.; Quirk, J.P. (1960). Millington, R. J., and Quirk. J.M. Transport in porous media. pp. 97-106. In: F.A. Van Beren, et al. (ed.) Trans. Int. Congr. Soil Sci., 7 th, Vol. 1, Madison, Wl. 14-24 Aug. 1960. Elsevier, Amsterdam.
Millington, R.J.; Quirk, J.P. (1961). Permeability of Porous Solids. Trans. Faraday Soc., 1961, 57, pp. 1200-1207. <doi:10.1039/TF9615701200>.
Penman, H.L. (1940). Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids. J. Agric. Sci., 30: pp. 437-462. <doi:10.1017/S0021859600048164>.
Xu, X; Nieber, J.L. Gupta, S.C. (1992). Compaction Effect on the Gas Diffusion Coefficient in Soils. Soil Sci. Soc. Am. J.,56, pp. 1743-1750. <doi:10.2136/sssaj1992.03615995005600060014x>.
Examples
# | pressure head |
pF <- seq(-3, 7, length = 201)
h <- 10^pF
# van Genuchten-Mualem model parameters
p <- c(0.08, .42, .05, 1.5, 100, .5)
# calculate soil hydraulic property values
shypL <- shypFun.01110(p, h)
# clculate the isothermal vapour conductivity
kvap <- KvapFun(p, por = p[2], retFun = NA, theta = shypL$theta, model = "MQ61",
Temp = 20, m = 3, pF, output = "log10")