spnn.predict {spnn} | R Documentation |
spnn.predict
Description
Estimates the category probabilities of new observations using a fitted SPNN.
Usage
spnn.predict(nn, newData)
Arguments
nn |
A trained Scaled Invariant Probabilistic Neural Network. |
newData |
A matrix of new observations where each row represents a single observation vector. |
Details
Given a trained Scale Invariant Probabilistic Neural Network and new data, the function spnn.predict returns the category with the highest probability and the probability estimates for each category.
Value
A list of the guessed categories and the probability estimates of each category.
See Also
spnn-package
, spnn.learn
, iris
Examples
library(spnn)
library(datasets)
data(iris)
# shuffle the iris data set
indexRandom <- sample(1:nrow(iris), size = nrow(iris), replace = FALSE)
# use 100 observations for training set
trainData <- iris[indexRandom[1:100],]
# use remaining observations for testing
testData <- iris[indexRandom[101:length(indexRandom)],]
# fit spnn
spnn <- spnn.learn(set = trainData, category.column = 5)
# estimate probabilities
predictions <- spnn.predict(nn = spnn, newData = testData[,1:4])
[Package spnn version 1.2.1 Index]