Gij.flow {spnaf} | R Documentation |
Calculate spatial autocorrelation with OD data and corresponding flows.
Description
Calculate spatial autocorrelation with OD data and corresponding flows.
Usage
Gij.flow(
df,
shape,
method = "queen",
k = NULL,
d = NULL,
idw = FALSE,
row_standardized = FALSE,
snap = 1,
OD = "t",
R = 1000
)
Arguments
df |
A data.frame that contains your Origin-Destination data. The df must consist of "oid" (origin id), "did" (destination id), and "n" (flow weight). |
shape |
A shapefile (in a polygon type) that matches your OD dataframe. The shape must have an "id" column to match your ids in df. |
method |
A string value among "queen" (spatial contiguity), "KNN" (k-nearest neighbors), and "fixed_distance" (fixed distance). |
k |
An integer value to define the number of nearest neighbors for the K-nearest neighbors method. |
d |
An integer value to define the distance for the fixed distance spatial weight matrix. |
idw |
A logical value indicating whether to use inverse distance weighting. |
row_standardized |
A logical value indicating whether to row-standardize the spatial weights. |
snap |
A parameter used to calculate |
OD |
A string value among "o" (origin-based), "d" (destination-based), and "t" (both ways), which determines how to generate spatial weights. The default value is "t". |
R |
An integer value to define how many times you want to execute bootstrapping. |
Value
The result is a list containing a dataframe and an sf
object. Both contain Gij statistics and p-value columns merged with your input df. The geometry type of the latter is linestring.
References
Berglund, S., & Karlström, A. (1999). Identifying local spatial association in flow data. Journal of Geographical Systems, 1(3), 219-236. https://doi.org/10.1007/s101090050013
Examples
# Data manipulation
CA <- spnaf::CA
OD <- cbind(CA$FIPS.County.Code.of.Geography.B, CA$FIPS.County.Code.of.Geography.A)
OD <- cbind(OD, CA$Flow.from.Geography.B.to.Geography.A)
OD <- data.frame(OD)
names(OD) <- c("oid", "did", "n")
OD$n <- as.numeric(OD$n)
OD <- OD[order(OD[,1], OD[,2]),]
head(OD) # check the input df's format
# Load sf polygon
CA_polygon <- spnaf::CA_polygon
head(CA_polygon) # it has a geometry column
# Execution of Gij.flow with data above and given parameters
## Not run:
result <- Gij.flow(df = OD, shape = CA_polygon, method = 'queen', snap = 1, OD = 't', R = 1000)
## End(Not run)
# check the results
## Not run:
head(result[[1]])
head(result[[2]])
## End(Not run)