predict0 {spmoran} | R Documentation |
Spatial predictions
Description
It is a function for spatial prediction using the model estimated from esf
, resf
, or resf_vc
function.
Usage
predict0( mod, meig0, x0 = NULL, xconst0 = NULL, xgroup0 = NULL, offset0 = NULL,
weight0 = NULL, compute_se=FALSE, compute_quantile = FALSE )
Arguments
mod |
, or resf_vc
meig0 |
Moran eigenvectors at prediction sites. Output from |
x0 |
Matrix of explanatory variables at prediction sites (N_0 x K). Each column of x0 must correspond to those in x in the input model (mod). Default is NULL |
xconst0 |
Effective for |
xgroup0 |
Matrix/vector of group IDs at prediction sites that may be integer or name by group (N_0 x K_g). Default is NULL |
offset0 |
Vector of offset variables at prediction sites (N_0 x 1). Effective if y is count (see |
weight0 |
Vector of weights for prediction sites (N_0 x 1). Required if compute_se = TRUE or compute_quantile = TRUE, and weight in the input model is not NULL |
compute_se |
If TRUE, predictive standard error is evaulated. It is currently supported only for continuous variables. If nongauss is specified in the input model (mod), standard error for the transformed y is evaluated. Default is FALSE |
compute_quantile |
If TRUE, Matrix of the quantiles for the predicted values (N x 15) is evaulated. It is currently supported only for continuous variables. Default is FALSE |
Value
pred |
Matrix with the first column for the predicted values (pred). The second and the third columns are the predicted trend component (xb) and the residual spatial process (sf_residual). If xgroup0 is specified, the fourth column is the predicted group effects (group). If tr_num > 0 or tr_nonneg ==TRUE (i.e., y is transformed) in the input model |
pred_quantile |
Effective if compute_quantile = TRUE. Matrix of the quantiles for the predicted values (N x 15). It is useful for evaluating uncertainty in the predictive values |
b_vc |
Matrix of estimated spatially (and non-spatially) varying coefficients (S(N)VCs) on x0 (N_0 x K) |
bse_vc |
Matrix of estimated standard errors for the S(N)VCs (N_0 x K) |
t_vc |
Matrix of estimated t-values for the S(N)VCs (N_0 x K) |
p_vc |
Matrix of estimated p-values for the S(N)VCs (N_0 x K) |
c_vc |
Matrix of estimated non-spatially varying coefficients (NVCs) on x0 (N x K). Effective if nvc =TRUE in |
cse_vc |
Matrix of standard errors for the NVCs on x0 (N x K).Effective if nvc =TRUE in |
ct_vc |
Matrix of t-values for the NVCs on x0 (N x K). Effective if nvc =TRUE in |
cp_vc |
Matrix of p-values for the NVCs on x0 (N x K). Effective if nvc =TRUE in |
See Also
Examples
require(spdep)
data(boston)
samp <- sample( dim( boston.c )[ 1 ], 300)
d <- boston.c[ samp, ] ## Data at observed sites
y <- d[, "CMEDV"]
x <- d[,c("ZN", "LSTAT")]
xconst <- d[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords <- d[,c("LON", "LAT")]
d0 <- boston.c[-samp, ] ## Data at unobserved sites
y0 <- d0[, "CMEDV"]
x0 <- d0[,c("ZN", "LSTAT")]
xconst0 <- d0[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords0 <- d0[,c("LON", "LAT")]
meig <- meigen( coords = coords )
meig0 <- meigen0( meig = meig, coords0 = coords0 )
############ Spatial prediction ############
#### model with residual spatial dependence
mod <- resf(y=y, x=x, meig=meig)
pred0 <- predict0( mod = mod, x0 = x0, meig0 = meig0 )
pred0$pred[1:5,] # Predicted values
#### model with spatially varying coefficients (SVCs)
mod <- resf_vc(y=y, x=x, xconst=xconst, meig=meig )
pred0 <- predict0( mod = mod, x0 = x0, xconst0=xconst0, meig0 = meig0 )
pred0$pred[1:5,] # Predicted values
pred0$b_vc[1:5,] # SVCs
pred0$bse_vc[1:5,]# standard errors of the SVCs
pred0$t_vc[1:5,] # t-values of the SNVCs
pred0$p_vc[1:5,] # p-values of the SNVCs
plot(y0,pred0$pred[,1]);abline(0,1)