rfpred {spm} | R Documentation |
Generate spatial predictions using random forest (RF)
Description
This function is to make spatial predictions using random forest.
Usage
rfpred(
trainx,
trainy,
longlatpredx,
predx,
mtry = if (!is.null(trainy) && !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else
floor(sqrt(ncol(trainx))),
ntree = 500,
...
)
Arguments
trainx |
a dataframe or matrix contains columns of predictor variables. |
trainy |
a vector of response, must have length equal to the number of rows in trainx. |
longlatpredx |
a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted. |
predx |
a dataframe or matrix contains columns of predictive variables for the grids to be predicted. |
mtry |
a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call. |
ntree |
number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used. |
... |
other arguments passed on to randomForest. |
Value
A dataframe of longitude, latitude and predictions.
Author(s)
Jin Li
References
Liaw, A. and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18-22.
Examples
## Not run:
data(petrel)
data(petrel.grid)
rfpred1 <- rfpred(petrel[, c(1,2, 6:9)], petrel[, 5], petrel.grid[, c(1,2)],
petrel.grid, ntree = 500)
names(rfpred1)
## End(Not run)